How bombardier beetles bomb, video


This 4 November 2019 video from London, England says about itself:

What puts the ‘bomb’ in bombardier beetle? | Natural History Museum

Animals protect themselves in a variety of ways, but bombardier beetles have a particularly clever method for getting out of trouble.

Burying beetle moves dead mouse, video


This 18 October 2019 video shows a mouse. It is dead, but it still moves. That is because of a burying beetle. The beetle will bury the mouse to provide food for its larvae.

Dick Neefjes in the Netherlands made this video.

Triassic beetle research mistake rectified


This May 2014 video says about itself:

The rove beetles are a family (Staphylinidae) of beetles, primarily distinguished by their short elytra that leave more than half of their abdomens exposed. With approximately 58,000 species in thousands of genera, the group is currently recognized as the largest family of beetles. It is an ancient group, with fossil rove beetles known from the Triassic, 200 million years ago, and possibly even earlier if the recently described Leehermania proves to be a member of this family. They are an ecologically and morphologically diverse group of beetleI, and commonly encountered in terrestrial ecosystems.

I did not leave all these inverts together, this video was taken just after I dumped what i’d found into a container to sort through them (I brought a small container with me in the woods).

From the Field Museum in the USA:

Identity crisis for fossil beetle helps rewrite beetle family tree

September 9, 2019

Summary: A tiny fossil beetle, about the size of FDR‘s nose on the US dime, is a totally different species than scientists thought it was, meaning that the beetle family tree needs a rewrite.

There are more different kinds of beetle than just about any other kind of animal — scientists have described about 5,800 different species of mammals, compared with nearly 400,000 species of beetles. Of those 400,000 kinds of beetles, more than 64,000 species are members of the rove beetle family, Staphylinidae. These mostly small earwig-looking insects are found all over the world, and they’ve been around since the time of the dinosaurs. But scientists are still figuring out exactly when rove beetles first evolved. A new study in Systematic Entomology suggests that the fossil beetle species believed to be the oldest rove beetle isn’t a rove beetle at all, meaning the beetle family tree needs a rewrite.

The beetle at the center of this mix-up, about the size of Franklin D. Roosevelt’s nose on the U.S. dime, is Leehermania prorova. When the fossils of Leehermania were first discovered in the 1990s along the Virginia and North Carolina border, they were believed to be the oldest rove beetles ever discovered — by about 50 million years.

Until 2012, the only public information on the fossils was two images, published in 1996 and 2005, but no formal description. Anyone who didn’t have direct access to the fossils of the species could only make guesses about its placement in the tree of life based on those photos.

So, when a formal description of the beetle was finally published, beetle scientists around the world were excited to read it.

“When Leehermania was formally described, and more photos came out, we thought to ourselves ‘that doesn’t look quite right for a staphylinid,'” says Margaret Thayer, a scientist at the Field Museum in Chicago and one of the paper’s nine authors. It didn’t look like the rove beetles that Thayer has spent her career studying.

“I happened to be at the museum when I first read the paper, so I went and looked through the specimens in our collection to compare,” said Alfred Newton, also a Field Museum scientist and paper author. His hunch was that this beetle might be more closely related to Hydroscaphidae, a living family of miniature insects known as skiff beetles, placed in a different suborder from rove beetles.

Across the Atlantic, Martin Fikáček recalled a similar feeling upon comparing the description and photos with the classification of Leehermania as a staphylinid. To Fikáček, a scientist at the National Museum in Prague, the beetle seemed to be a closer fit in the Myxophaga — the suborder that contains skiff beetles. Scientist Chenyang Cai at China’s Nanjing Institute of Geology and Paleontology and several other authors came to the same conclusion.

One of the clues that Leehermania wasn’t really a staphylinid was its mandibles — the pincer-like jaws. “Staphylinids all have exposed mandibles, from at least some angle,” says Newton. “In Leehermania, what were originally interpreted as mandibles are actually maxillary palpi — a different mouthpart structure entirely. The mandibles aren’t exposed here at all, at least from what we can see.”

Another hallmark of staphylinid beetles is their somewhat club-shaped antennae, which start with a narrow base and get wider toward the tip. In Leehermania, the antennae were club-shaped, but the club was more narrowed toward the tip.

Given the hidden mandibles, distinct antennal shape, and other features, including “paratergites” — little plates on the sides of most staphylinid abdomens that are absent in Leehermania — and the shape of the female insects’ genitalia, something wasn’t adding up. Leehermania seemed to be a much better fit in the suborder Myxophaga than in Staphylinidae.

Thanks to the power of the internet, the scientists were able to collaborate freely and quickly across four continents. “The international collaboration that occurred here was really important to the success of the study,” said Shûhei Yamamoto, a Field Museum scientist and paper author who studies staphylinidae and other beetles.

As the group’s hunch turned to a theory, then a study, then a formal analysis, the tests they ran showed Leehermania fitting nicely as a member of the beetle suborder Myxophaga, likely as a sister to the ancestors of today’s skiff beetles. This discovery means that the rove beetle family isn’t yet documented to be as old as scientists thought, but the skiff beetle family is now way older — Leehermania lived 226 million years ago, 100 million years before the next oldest fossil skiff beetle known.

Misclassification of extinct species happens all the time in science, for a variety of reasons.

For one, fossils can be extremely difficult to decipher. Since compression fossils like Leehermania are trapped in a sheet of rock, there is often only one viewing angle, though two in this case: a bird’s-eye-view called “dorsal,” or the top surface, and the “lateral” or side view. Any information about the species has to be gathered from these limited perspectives, so some information on colors, textures, patterns, anatomical details, and of course life-cycle information may be impossible to retrieve. Analysis is even more challenging when your specimens are only 2-3 mm long.

Lack of comparative data also causes problems for researchers. Not only are many characteristics of the insects lost in fossils, but until 2011, the large amount of data used here to test Leehermania’s placement in different families didn’t exist.

“Our analysis made use of a huge data set of morphological characters of beetles gathered for the ‘Beetle Tree of Life’ [BToL] project,” says Thayer. “That project was really crucial to our analysis and provided a framework upon which we were able to analyze Leehermania.” Four authors of the new paper, including Thayer and Newton, were among the authors of the published version of the BToL morphology paper. DNA-based analyses published by the BtoL project and other researchers were also essential to the Leehermania analyses.

Testing and revising the placement of living things in the tree of life is like working on a huge sudoku puzzle with contributors from all over the world. You have methods to figure out where the numbers should go, but if they’re incorrectly placed, you only know — eventually — based on their relationships to the surrounding numbers. If you carry on with the puzzle for too long with an incorrect placement, numbers filled in after the fact might also be incorrect. Revisiting Leehermania’s classification was important to help other researchers avoid using the fossils incorrectly to date analyses of beetles as a whole or identify other beetles as staphylinids based on Leehermania.

For the staphylinid family, losing their oldest ancestor produces new questions about how the family evolved.

“The re-classification of Leehermania means that staphylinids are now 50 million years younger than we thought,” says Fikáček. “But if staphylinids are so much younger, that means that this family evolved into many lineages much more rapidly than we thought they did.” Of course, older staphylinidae fossils are likely to turn up in the future and new analyses will be needed.

At a time in the Earth’s history when life was still recovering after a mass extinction, the appearance of Leehermania and staphylinidae is a testament to how resilient and adaptable beetles can be to diverse, and often harsh, living conditions.

“Throughout history, beetles have survived conditions that other animals have not,” says Fikáček. “As we study these insects, we might reveal some secret to evolutionary success that beetles possess.”

New South American water beetles discoveries


This 2009 video says about itself:

Adults and larvae of Hydrophilidae

This is a video of aquatic beetles belonging to the family Hydrophilidae. These insects are also known [as] “water scavenger beetles” or “silver water beetles”.

From the University of Kansas in the USA:

New water beetle species show biodiversity still undiscovered in at-risk South American habitats

August 13, 2019

Researchers from the University of Kansas have described three genera and 17 new species of water scavenger beetles from the Guiana and Brazilian Shield regions of South America, areas seen as treasure houses of biodiversity. The beetles from the countries of French GuianaFrench Macron wants destructive gold mining in French Guiana, Suriname, Brazil, Guyana and Venezuela were discovered through fieldwork and by combing through entomological collections at the Smithsonian Institution and KU.

The beetles are described in a new paper in ZooKeys, a peer-reviewed journal.

Lead author Jennifer Girón, a KU doctoral student in ecology & evolutionary biology and the Division of Entomology at KU’s Biodiversity Institute, said the new species hint at vast biodiversity left to be described in regions where resource-extraction operations today are destroying huge swaths of natural habitat.

“The regions we’ve been working on, like Venezuela and Brazil, are being degraded by logging and mining,” she said. “Eventually, they’re going to be destroyed, and whatever lives there is not going to be able to survive. At this point, we don’t even know what’s there — there are so many different kinds of habitats and so many different resources. The more we go there, and the more we keep finding new species, the more we realize that we know next to nothing about what’s there.”

According to Girón and co-author Andrew Short, associate professor of ecology & evolutionary biology at KU, fieldwork and taxonomic work on Acidocerinae (a subfamily of the family Hydrophilidae of aquatic beetles) during the past 20 years have exposed “an eye-opening diversity of lineages and forms resulting in the description of seven of the 11 presently recorded genera since 1999.”

The KU researchers said the three new genera they’ve now added to Acidocerinae possibly have remained obscure until now because many of the species inhabit seepages — areas where groundwater rises to the surface through mud or flow over rocks near rivers or streams.

Girón and Short discovered some of the new species during a field trip to Suriname.

“I have only been to one of the expeditions there,” Girón said. “Before that, I had no experience collecting aquatics. But Andrew (Short) has been to those places many times. It’s very remote, in the heart of the jungle. We went four hours in a bus and then four more hours in a boat up the river. There is a field station for researchers to go and stay for a few days there. We looked for the beetles along the river, forest streams and also in seepages.”

During their fieldwork, Girón and Short, along with a group of KU students, sought the seepages that were rich hunting grounds for acidocerine aquatic beetles.

“If you’re along a big river, you’re not as likely to find them,” Girón said. “You have to find places where there’s a thin layer of running water or small pools on rocks. They’re more common around places with exposed rock, like a rock outcrop or a cascade. These habitats have been traditionally overlooked because when you think of collecting aquatic beetles or aquatic insects in general, you think of rivers or streams or ponds or things like that — you usually don’t think about seepages as places where you would find beetles. So usually you don’t go there. It’s not that these aquatic beetles are especially rare or hard to find. It’s more like people usually don’t collect in these habitats.”

Girón said the descriptions of the new aquatic beetles also underscore the usefulness of museum collections to ongoing scientific research in biodiversity.

“It’s important to highlight the value of collections,” she said. “Without specimens housed in collections, it would be impossible to do this kind of work. Nowadays, there has been some controversy about whether it is necessary to collect specimens and deposit them in collections in order to describe new species. Every person that has ever worked with collections will say, ‘Yes, we definitely need to maintain specimens accessible in collections.’ But there are recent publications where authors essentially just add a picture of one individual to their description without actual specimens deposited in collections, and that can be enough for them to publish a description. The problem with that is there would be no reference specimens for detailed comparisons in the future. For people who do taxonomic work and need to compare many specimens to define the limits of different species, one photo is not going to be enough.”

To differentiate and classify the new species, Girón and Short focused on molecular data as well as a close examination of morphology, or the bodies of the aquatic beetles.

“This particular paper is part of a bigger research effort that aims to explain how these beetles have shifted habitats across the history of the group,” Girón said. “It seems like habitat has caused some morphological differences. Many aquatic beetles that live in the same habitats appear very similar to each other — but they’re not necessarily closely related. We’ve been using molecular techniques to figure out relationships among species and genera in the group.”

Girón, who grew up in Colombia and earned her master’s degree in Puerto Rico, said she hoped to graduate with her KU doctorate in the coming academic year. After that, she will continue her appointments as research associate and acting collections manager at the Natural Science Research Laboratory of the Museum of Texas Tech University.