Top 10 newly discovered species for 2018

This January 2018 video says about itself:

AMAZING Recently Discovered Species

You’d think by now we’ve done a pretty good job at cataloguing all of the species in the world, but we’re far from done! Scientists believe there are around 8.7 million species in the world, with between 1 and 2 million of those being animals. And it’s thought the vast majority have not even been documented yet. 2017 saw a number of fascinating new discoveries, and we’ll touch on some of them today.

10 – Not for human consumption… Don’t let the name Churro mislead you, there is nothing tasty about this new marine worm that was discovered in the Gulf of California in 2017. They’ve called it Churro because of the striking resemblance to a Churro, the delicious fried-dough pastry dessert that is dipped into sweet sauces. This worm is between 4 and 10 inches and feeds off molluscs like clams.

9 – Feeling Blue… I would be too if faced with this bright blue tarantula that was discovered in Guyana. It doesn’t even have a name yet, that’s how new it is! It was spotted by Andrew Snyder, who says his flashlight bounced off something very blue, which he thought was just a reflection. When he went closer, he was really surprised to see the bright blue legs of the spider. Firstly, this is the first blue tarantula found in South America, as they’re usually found in Southeast Asia, and secondly, this one was living in a colony, which is very unusual for spiders.

8 – 5 a day… If you’re brave, you can add this bizarre fruit to yours! It’s the obscure relative of the tomato, and it was discovered in Australia. This fruit has been known to botanists for 50 years already, but it was only described officially in 2017. 7th graders helped name this weird fruit the deathly fruit, and when cut open, the flesh of the fruit changes from whitish green to blood red and then matures into a dry, white bony state. The fruit looks very unappetising, and I doubt it’s going to be flying off the shelves anytime soon!

7 – Blooming marvellous… A new species of orchid was found last year, called the devil orchid aka Telipogon diabolicus. This orchid is a fusion of male and female flower parts and as you can see, looks a lot like the head of the devil! This plant is only found in a certain area of Columbia, which is currently threatened by reconstruction.

6 – Now you see me… Now you don’t! You’re aware of how lizards drop their tails in order to escape a predator, but this newly discovered gecko takes things a little further. This creature is covered with overlapping scales, and when it’s in trouble, has the ability to shed those scales and make a quick, naked getaway. Within a few weeks, those scales have grown back and the gecko is ready for action once again.

5 – Down Under… We head down 13,000 feet below the surface of the Pacific Ocean to meet a new species of sponge that was confirmed in 2017. Plenaster craigi have been found in 2013 and 2015, and it was just last year that it was confirmed as an official new species. It was discovered in the Clarion-Clipperton Zone, and live on metal-rich nodules that are common in that area.

4 – Look familiar? Pictured here is the Arcella gandalfi, and if you’ve watched Lord of the Rings, you’ll know why it got that name. These freshwater amoebas were rumoured to exist in Brazil, but they’ve only recently been discovered and confirmed to be real. Considering they’re a single cell organism, these amoeba’s are quite big, measuring 81 micrometers in diameter and 71 micrometers in height.

3 – Pretty in Pink… This is the Pink Floyd pistol shrimp, a new species of snapping shrimp found in the waters off the Pacific coast of Panama. Pink Floyd happened to be one of the favourite bands of the scientists who discovered it. As if the neon pink claw wasn’t strange enough, this crazy shrimp can kill its prey with noise! The snap of that giant claw is loud and powerful that it creates cavitation bubbles, which then burst into the prey, either stunning them or killing them. The sound reaches levels of 210 decibels, which is louder than a gunshot!

2 – No lazing around… An ancient giant sloth fossil was also found in 2017, hidden in an underwater cave in the jungle of the Yucatán in Mexico. This area is not known for many fossil finds, because the humid environment tends to destroy any traces of bones. Vicente Fito went diving in a limestone cave in 2009 where he made this remarkable discovery. He gave the bones to the National Institute of Anthropology and History in Mexico, where they’ve spent all this time piecing everything together. This new species of sloth is thought to weigh around 500-pounds! Apparently the oldest sloth fossil ever found is roughly 9 million years old, and was found in Argentina.

This 23 May 2019 video is called Top 10 New Species of 2018.

From the SUNY College of Environmental Science and Forestry in the USA:

Top 10 new species for 2018

New to science: Plants, animals and microbes that have ‘found a way to survive against the odds’

May 23, 2018

The large and small, beautiful and bizarre are among the newly discovered animals, plants and microbes announced by the College of Environmental Science and Forestry (ESF) as the Top 10 New Species for 2018.

The large is a majestic tree that towers up to 130 feet (40 m); among the small is a tiny, single-celled protist. The list of science’s best discoveries includes a rare great ape and the fossil of a marsupial lion that roamed Australia in the late Oligocene Epoch. There are also two residents of the world’s oceans — a fish from the depths of the Pacific Ocean and a bright amphipod from the chilly waters of the Antarctic Ocean.

The 11th annual list, compiled by ESF’s International Institute for Species Exploration (IISE), also includes a beetle that looks like part of an ant, a plant that partners with a fungus, a bacterium that looks like hair and a beetle that resides in the dark and has an interesting evolutionary story.

In addition to the two ocean dwellers, the new species hail from countries around the globe: Brazil, Costa Rica, Sumatra in Indonesia, the Canary Islands in the Atlantic Ocean, Japan, Australia and China. And one was found in an aquarium in the United States — its origin in the wild is not known.

The first list was compiled in 2008.

“I’m constantly amazed at how many new species show up and the range of things that are discovered”, said ESF President Quentin Wheeler, the founding director of the IISE.

Wheeler and the IISE issue the list each year as a lesson in the value of species exploration and biodiversity.

“We name about 18,000 per year but we think at least 20,000 per year are going extinct. … So many of these species — if we don’t find them, name them and describe them now — will be lost forever. And yet they can teach us so much about the intricacies of ecosystems and the details of evolutionary history. Each of them has found a way to survive against the odds of changing competition, climate and environmental conditions. So each can teach us something really worth knowing as we face an uncertain environmental future ourselves.”

Wheeler puts responsibility for the rate of extinctions squarely on humans.

“At this stage, it’s us. People are altering habitats and changing the climate”, he said. “As inconvenient as it might be to adapt to climate change with our crops and relocate cities in the most extreme scenarios, what we can’t do is bring back species once they’re gone.”

The institute’s international committee of taxonomists selects the Top 10 from among the approximately 18,000 new species named the previous year. The list is made public around May 23 to recognize the birthday of Carolus Linnaeus, an 18th century Swedish botanist who is considered the father of modern taxonomy.

The list follows.

Ancoracysta twista

Protist: Aquarium to enigma

Ancoracysta twista

Location: Unknown

Discovered in an aquarium in San Diego, California, USA, this new single-celled protist has challenged scientists to determine its nearest relatives. It does not fit neatly within any known group and appears to be a previously undiscovered, early lineage of Eukaryota with a uniquely rich mitochondrial genome. Eukaryotes are organisms with cells in which genetic material is organized in a membrane-bound nucleus. Prokaryotes, like bacteria and archaea, lack such an organized nucleus. Eukaryotes include single-celled protists as well as multi-celled organisms we commonly think of as animals, plants and fungi.

Ancoracysta twista is a predatory flagellate that uses its whip-like flagella to propel itself and unusual harpoon-like organelles, called ancoracysts, to immobilize other protists on which it feeds. The geographic origin of the species in the wild is not known. It was found in a tropical aquarium at the Scripps Institution of Oceanography on a brain coral. The unusually large number of genes in its mitochondrial genome opens a window into the early evolution of eukaryotic organisms.

Dinizia jueirana-facao

Atlantic forest tree: Mighty in size, small in number

Dinizia jueirana-facao

Location: Brazil

The legume genus Dinizia was known, until now, from a single Amazonian tree species, D. excelsa, discovered nearly 100 years ago. Dinizia jueirana-facao, up to 130 feet (40 m) in height, emerges above the canopy of the semi-deciduous, riparian, pristine Atlantic forest where it is found. This massive tree, weighing an estimated 62 tons (56,000 kg), is smaller than its Amazonian sister-species and lacks its buttresses, but is similarly impressive. D. jueirana-facao is known only from within and just beyond the boundaries of the Reserva Natural Vale in northern Espirito Santo, Brazil. While large in dimension, the tree is limited in numbers — it is known from only 25 individuals, about half of which are in the protected area, making it critically endangered. The woody fruits are impressive in size, too, reaching about 18 inches (0.5 m) in length. More than 2,000 species of vertebrate animals live in the Atlantic forest, including almost 200 endemic species of birds. This forest is home to more than half of the threatened animal species in Brazil, but its range has been severely diminished and fragmented, with perhaps 15 percent of its once 330 million acres (more than 1.3 million square kilometers) remaining.

Epimeria quasimodo, photo Cédric D’udekem D’acoz, ©Royal Belgian Institute Of Natural Sciences

Amphipod: A name that rings a bell

Epimeria quasimodo

Location: Antarctic Ocean

Here’s a new species whose name might ring a bell. This amphipod, about 2 inches (50mm) in length, Epimeria quasimodo, is named for Victor Hugo’s character, Quasimodo the hunchback, in reference to its somewhat humped back. It is one of 26 new species of amphipods of the genus Epimeria from the Southern Ocean with incredible spines and vivid colors. The number of species, and their extraordinary morphological structures and colors, makes the genus Epimeria an icon of the Southern Ocean that includes both free-swimming predators and sessile filter feeders.

The genus is abundant in the glacial waters circulating south of the Polar Front and their crested adornments are reminiscent of mythological dragons. When a treatment of the genus was published in 2007, many researchers assumed that the species were rather completely known. Using a combination of morphology and DNA evidence, however, a Belgian pair of investigators have demonstrated in their comprehensive monograph just how little we yet know of these spectacular invertebrates.

This video says about itself:

New species of beetle discovered hitchhiking on ants

23 February 2017

Summarises research by von Beeren and Tishechkin. “Nymphister kronaueri von Beeren & Tishechkin sp. nov., an army ant-associated beetle species (Coleoptera: Histeridae: Haeteriinae) with an exceptional mechanism of phoresy.” BMC Zoology (2017).

Read the original article here.

The article continues:

Baffling Beetle: Camouflaged hitchhiker

Nymphister kronaueri

Location: Costa Rica

Nymphister kronaueri is a tiny beetle that lives among ants. At about 1.5 mm in length, 16 of them could line up head-to-tail in the space of an inch (2.5 cm). But their story gets much better. They live exclusively among one species of army ant, Eciton mexicanum. The host ants, as with other army ants, do not construct permanent nests but are nomadic. In the case of E. mexicanum, they spend two to three weeks on the move, making raids each day to capture thousands of prey items, then spend two to three weeks in one location. While the beetle can move about and feed while the host colony is stationary, it must make the trip with the ants when they are on the move to a new location. The beetle’s body is the precise size, shape and color of the abdomen of a worker ant. The beetle uses its mouthparts to grab the skinny portion of the host abdomen and hang on, letting the ant do the walking. At a glance, an ant with the beetle onboard appears to have two abdomens but the upper one is a beetle. Like other myrmecophiles (literally, ant lovers), these beetles must use chemical signals or other adaptations to avoid becoming prey themselves. Exactly how that works in the case of N. kronaueri is yet to be determined.

This 2 November 2017 video is called New Species of Orangutan – The Tapanuli Orangutan.

Tapanuli Orangutan: Endangered great ape

Pongo tapanuliensis

Location: Sumatra, Indonesia

Until now, only half a dozen non-human great apes have been recognized. The eastern and western gorillas, chimpanzees and bonobos are more closely related to humans than the orangutans which are the only great apes in Asia. In 2001, the orangutans of Sumatra and Borneo were recognized as distinct species, Pongo abelii and P. pygmaeus. An international team of researchers, examining morphometric, behavioral, and genomic evidence, have concluded that an isolated population at the southern range limit of Sumatran orangutans, in Batang Toru, is distinct from both northern Sumatran and Bornean species. Genomic evidence suggests that while the northern Sumatra and Borneo species separated about 674 thousand years ago, this southern Sumatra species diverged much earlier, about 3.38 million years ago. As soon as the significance of this isolated population was determined, it revealed the most imperiled great ape in the world. Only an estimated 800 individuals exist in fragmented habitat spread over about 250,000 acres (about 1,000 square kilometers) on medium elevation hills and submontane forests from about 1,000 to 4,000 feet (300 to 1,300 m) above sea level, with densest populations in primary forest. Size is similar to other orangutans, with females under 4 feet (1.21 m) in height and males under 5 feet (1.53 m).

This 12 February 2018 video is called Ocean’s deepest fish thrives 26,000 feet below surface

Swire’s Snailfish: Deepest fish in the sea

Pseudoliparis swirei

Location: Western Pacific Ocean

In the dark abyss of the Mariana Trench in the western Pacific lies the deepest spot in the world’s oceans and the deepest-dwelling fish ever discovered with verified depth. Large numbers of the new species were attracted to traps baited with mackerel. Pseudoliparis swirei is a small, tadpole-like fish measuring a little over four inches in length (112 mm) yet appears to be the top predator in its benthic community at the bottom of this particularly deep sea. It was captured at depths between 22,000 and 26,000 feet (6,898 and 7,966 m). A fish was recorded on camera at an even greater depth, at nearly 27,000 feet (8,143 m) but it was not recovered and could not be confirmed to be the same species. P. swirei belongs to the snailfish family, Liparidae. Among the family’s more than 400 named species are fish found at all depths, from intertidal pools to the deepest reaches. It is believed that about 27,000 feet (8,200 m) is a physiological limit below which nearly all fishes cannot survive.

This 26 KJuly 2017 video is called New plant that does not perform photosynthesis has been discovered in Japan.

Heterotrophic Flower: Magnificent moocher

Sciaphila sugimotoi

Location: Ishigaki Island, Japan

Most plants are autotrophic, capturing solar energy to feed themselves by means of photosynthesis. A few, like the newly discovered S. sugimotoi, are heterotrophic, deriving their sustenance from other organisms. In this case, the plant is symbiotic with a fungus from which it derives nutrition without harm to the partner. In fact, the plant family Triuridaceae to which it belongs consists entirely of such mycoheterotrophs (fungus symbionts). The discovery of any new species of plant in Japan is newsworthy as the flora is well-documented, so such a beautiful new flower is an exciting addition. The delicate S. sugimotoi, just under 4 inches in height (10 cm), appears during short flowering times in September and October, producing small blossoms. The species is considered critically endangered as it has been found in only two locations on the island in humid evergreen broadleaf forest, represented by perhaps 50 plants. As with other fungal symbionts, the species depends on a stable ecosystem for survival.

This 25 April 2017 video in Spanish is about the discovery of Thiolava veneris.

Volcanic Bacterium: New species erupting onto the scene

Thiolava veneris

Location: Canary Islands

When the submarine volcano Tagoro erupted off the coast of El Hierro in the Canary Islands in 2011, it abruptly increased water temperature, decreased oxygen and released massive quantities of carbon dioxide and hydrogen sulfide, wiping out much of the existing marine ecosystem. Three years later, scientists found the first colonizers of this newly deposited area — a new species of proteobacteria producing long, hair-like structures composed of bacterial cells within a sheath. The bacteria formed a massive white mat, extending for nearly half an acre (about 2,000 square meters) around the summit of the newly formed Tagoro volcanic cone at depths of about 430 feet (129-132 m). Scientists reporting the new species concluded that the unique metabolic characteristics of the bacteria allow them to colonize this newly formed seabed, paving the way for development of early-stage ecosystems. They dubbed the filamentous mat of bacteria “Venus’ hair.”

This 6 December 2017 video is called Extinct kangaroo like lion discovered in Australia.

Marsupial Lion: Ferocious fossil

Wakaleo schouteni

Location: Australia

In the late Oligocene, which ended about 23 million years ago as the Miocene arrived, a marsupial lion, Wakaleo schouteni, roamed Australia’s open forest habitat in northwestern Queensland, stalking its prey. Scientists from the University of New South Wales recovered fossils in the Riversleigh World Heritage Area in Queensland that proved to be a previously unknown fossil marsupial lion. Weighing in at about 50 pounds, more or less the size of a Siberian husky dog, this predator spent part of its time in trees. Its teeth suggest that it was not completely reliant on meat but was, rather, an omnivore. It is part of a lineage (the genus Wakaleo) that followed Cope’s rule during the Miocene, increasing in size through time, possibly in response to larger prey that, in turn, evolved as the flora changed as the continent became drier and cooler. Based on their discovery, researchers believe two species of marsupial lion were present in the late Oligocene 25 million years ago. The other, Wakaleo pitikantensis, was slightly smaller and was identified from teeth and limb bones discovered near Lake Pitikanta in South Australia in 1961.

Xuedytes bellus, Tian & Huang, 2017

Cave Beetle: Imprints of darkness

Xuedytes bellus

Location: China

Beetles that become adapted to life in the permanent darkness of caves often resemble one another in a whole suite of characteristics including a compact body, greatly elongated, spider-like appendages, and loss of flight wings, eyes and pigmentation. Such troglobitic beetles are a prime example of convergent evolution, that is, unrelated species evolving similar attributes as adaptions to similar selection forces. A new species of troglobitic ground beetle from China, less than half an inch in length (about 9 mm), is striking in the dramatic elongation of its head and prothorax, the body segment immediately behind the head to which the first pair of legs attach. Xuedytes bellus was discovered in a cave in Du’an, Guangxi Province, China. Like much of southern China, this is in a vast karst landscape riddled with caves and home to the greatest diversity of cavernicolous trechine ground beetles (family Carabidae) in the world. To date, more than 130 species, representing nearly 50 genera, have been described from China. This new one is a spectacular addition to the fauna.

See also here. And here.


Scarlet lily beetles mate on flowering plant

This 8 May 2018 video shows scarlet lily beetles mating on a snake’s head fritillary flowering plant.

Wim Bender in the Netherlands made this video.

Newly discovered beetle species named after astronaut, Leonardo Dicaprio

This video says about itself:

BREAKING! Leonardo DiCaprio awarded an impressive insect honor

1 May 2018

Meet Grouvellinus leonardodicaprioi.

Translated from Dutch NOS TV today:

Bornean riffe beetle now known as Grouvellinus andrekuipersi

There was already a tulip named after him and a planetoid, but since today astronaut André Kuipers is also the proud name giver of a new beetle species; the Grouvellinus andrekuipersi.

The beetle was discovered during an expedition in Borneo, organized by biologist Menno Schilthuizen. During the same expedition another beetle was found, named after the American actor Leonardo DiCaprio.


De Groot wrote a competition for an original name for the beetle and biology student Auke-Florian Hiemstra suggested naming the insect after André Kuipers because of his great commitment to the environment.

“As an astronaut, Kuipers saw the earth from space and experienced the “Overview Effect“. He suddenly saw how vulnerable the earth is and realized that we should be careful with our planet.”

Kuipers received the scientific publication in Zookeys from Hiemstra, in which the beetle is described with its new name.

Riffe beetle

The Grouvellinus andrekuipersi is a real riffe beetle. It was found in an area in Borneo with a lot of clean and fresh water. The beetles live on pieces of wood in streams and mainly eat the bacteria that grow on the wood. The Grouvellinus andrekuipersi probably only occurs in Borneo.

It is not the first time that animals and insects are named after celebrities. A [pistol] shrimp with bright pink scissors and a good sense of drumming was named after the British rock band Pink Floyd and a fly with heavy arms after Arnold Schwarzenegger.

Donald Trump was also named after an animal species. The moth Neopalpa donaldtrumpi has a yellow-orange ‘haircut’ that is very similar to that of the American president.

Australian fire beetles avoid heat

This 13 february 2018 video is called The impact of infrared radiation in flight control in the Australian “fire beetle” Merimna atrata.

From the University of Bonn in Germany:

Australian fire beetle avoids the heat: Its infrared organs warn the insect of hot surfaces

February 15, 2018

Summary: The Australian jewel beetle Merimna atrata has several heat sensors. Originally it was thought that it uses them to detect forest fires as the insect lays its eggs in the wood of burned eucalyptus trees. Researchers were finally able to refute this hypothesis. Instead, the beetle appears to need its heat sensors for a different purpose: to not burn its feet on landing.

The Australian fire beetle is attracted to freshly burnt wood. Experts also call this pyrophilia (“love of fire”). This behavior is not very common in insects. Merimna atrata however has a good reason for this. The dead wood provides plenty of food for the larvae of the beetle, so it uses the wood for oviposition.

But how does Merimna find a freshly burned area? For some time it has been known that the fire beetle has heat sensors with which it can detect infrared radiation. In a sense, it “sees” hot places in its environment against a cooler background. It was originally believed that the insects use this ability to detect forest fires.

“However, the IR organs in Merimna atrata are relatively insensitive,” Dr. Helmut Schmitz emphasizes. Schmitz is a lecturer at the Institute of Zoology at the University of Bonn; he has investigated thermo and infrared reception in the black insects for nearly two decades. “This actually contradicts the assumption that the IR organs enable the beetle to detect fires from a greater distance.”

Beetles on a pin

Together with his colleagues, Schmitz has now been able to demonstrate for the first time that these doubts are justified. The scientists designed an ingenious experiment for this purpose. Put simply, they stuck the beetles with their backs to the end of a pin and used this to hang them up. This left the experimental animals with the ability to fly continuously, but without moving forward. “More importantly, they were able to navigate in any direction, i.e. turning right or left,” emphasizes Schmitz.

Then the scientists stimulated the flying beetles with weak infrared radiation from the side. The beetles changed their flight direction in response, but always away from the source and never towards it.

“Merimna’s IR organs are located on both sides of its abdomen; incidentally, this is unique in the animal kingdom,” explains Schmitz. “When we occluded the IR receptors with aluminum foil, the animals no longer reacted to the radiation, but always carried on flying straight ahead. As soon as we removed the foil they displayed their original behavior again.” This observation suggests another use of the heat sensors. “Presumably they help the fire beetles avoid hot spots when approaching an oviposition site such as a freshly burnt branch; these hot spots are not visible with the naked eye to humans and animals during the day,” says Schmitz.

How the animals detect forest fires remains unclear. Even visual stimuli seem to play no role in fire detection, despite Merimna atrata having good eyesight. The researchers tested this hypothesis by showing the beetles slides of large clouds of smoke rising above a forest area. But the insects were completely unimpressed and they never changed their flight direction.

Following their nose

“We therefore assume that Merimna atrata gets its information about an ongoing fire from the smell of smoke,” concludes Helmut Schmitz. This is also important for another reason. Odors can tell you exactly what is actually burning. In contrast, this information cannot be inferred from the heat development or the appearance of a smoke plume. Merimna is very picky, it only lays its eggs in burnt eucalyptus wood and avoids other trees. If the insect was to rely on its IR sense, it would risk being lured into the wrong kind of fires.

Something quite different can be seen with a close European relative; the fire beetles of the genus Melanophila. Their larvae develop in a variety of trees. Heat perception would be quite worthwhile for them. In fact, Melanophila also has infrared sensors, but they are completely different. They can presumably detect infrared radiation even from a long distance. According to measurements and theoretical calculations, Melanophila heat sensors are at least 500 times more sensitive than those of Merimna atrata.

Australian beetles’ colours, new study

This video from Australia says about itself:

25 February 2017

A slideshow of leaf beetles in the genus Paropsisterna.

From the Yale-NUS College in Singapore:

Beetles’ bright colors used for camouflage instead of warning off predators

First study to examine beetle colouration in their natural habitat prompts discovery

December 4, 2017

NUS College Postdoctoral Fellow Eunice Tan has discovered that the bright colour patterns of beetles are not a warning signal to predators as previously believed, but actually a form of camouflage, turning an old assumption on its head. Dr Tan, along with four collaborators from Australia and Spain, examined 51 species of Australian leaf beetles in their natural habitats, and discovered that each beetle’s colour pattern is similar to the host plants that the beetle lives on, suggesting that those conspicuous colours help the beetle blend in with the plants it inhabits. The study was recently published as an open-access article in the peer-reviewed journal Frontiers in Ecology and Evolution.

As the first ecologist to examine the colour patterns of live leaf beetles in relation to their host plants, Dr Tan contextualised the colour patterns of beetles to their natural habitats, which allowed her to challenge the prevailing theory among coleopterists — scientists who study beetles — that the bright colours of leaf beetles developed as a deterrent signal to predators. These colourful markings were assumed to be a warning to predators against eating the beetles, which are able to secrete poisonous chemicals in self-defence. However, this idea was based on earlier studies, which focused on using museum collections of beetle specimens for their analyses. While this method affords researchers a large number of samples, the discolouration of deceased specimens made accurate colour analysis of the beetles impossible. Furthermore, such methodology also fails to take into account the colouration of each beetle’s natural environment.

Dr Tan and her team spent 17 months photographing live beetles in 32 locations across four Australian states, in order to compare each beetle’s colouration to the colour of the leaf it was found on. Taking into account the evolutionary relationship between the different beetle species, Dr Tan discovered that different species of beetles had colour patterns similar to those of their host plants. This suggests that the colourations have a camouflaging effect, rather than serving an aposematic (predator-deterring) function. This camouflage effect was particularly pronounced in beetles which fed on multiple types of plants, as they had to blend into many different environments.

“It was long thought that conspicuous colour patterns served to advertise the distastefulness of an organism to its predators. However, we have found that this cannot be the sole reason that conspicuous colour patterns developed in leaf beetles. In general, the beetles had colouration similar to that of their host plants, suggesting that there is natural selection at play and therefore some evolutionary advantage for these beetles to use camouflage as a defensive strategy against predators,” shared Dr Tan.

Through her field studies, Dr Tan also observed the impact of ecological factors on the evolution of different beetle species’ colouration patterns. Dr Tan’s study found that both larger and smaller beetle species in her sample had similar levels of colour contrast against their backgrounds. However, the larger beetle species were more likely to be found in darker environments than their smaller cousins, suggesting that they were employing a hiding strategy against predators, despite having similar conspicuous colouration to their smaller cousins. An ecological property, the brightness of the environment, was therefore a potential factor influencing the evolution of beetle colouration.

Taken together, the findings of this study “point to a complex suite of factors driving natural selection, such as types of predators and host plant choice, which affect the evolution of colouration in leaf beetles,” said Dr Tan. Challenging the assumption that the sole explanation for bright coloration in leaf beetles is meant to ward off predators, Dr Tan postulated that the variety of anti-predator strategies in leaf beetles that she has found may explain their successful spread into a variety of habitats.