Big Money ruining Tyrannosaurus science


This 16 April 2020 video from the USA says about itself:

Mr. Nick talks about Stan, the resident T-rex at the Dinosaur Discovery Museum in Kenosha.

By Michael Greshko in National Geographic, 12 October 2020:

‘Stan’ the T. rex just sold for $31.8 million—and scientists are furious

The fossil was priceless to paleontologists, but experts fear it may be lost to research now that it belongs to an unknown bidder.

More than three decades ago in South Dakota, an amateur paleontologist named Stan Sacrison discovered a titan of the ancient Earth: the fossil of a mostly complete, 39-foot-long Tyrannosaurus rex. Nicknamed “Stan” after its discoverer, the beast was excavated in 1992 and has long been housed at the private Black Hills Institute of Geological Research in Hill City, South Dakota. But even if you’ve never been there, chances are good that you’ve seen this particular T. rex. Dozens of high-quality casts of its bones are on display in museums around the world, from Tokyo to Albuquerque, New Mexico.

Now, an auctioneer’s hammer has thrown Stan’s future into question, with the dinosaur bones sold off to the highest—and, so far, anonymous—bidder, stoking fear among experts that this beloved T. rex may be lost to science.

On October 6, the London-based auction house Christie’s sold the T. rex for a record $31.8 million, the highest price ever paid at auction for a fossil. The previous record was set in 1997 with the sale of “Sue,” a largely complete T. rex dug up by the same South Dakota institute and eventually purchased by the Field Museum of Natural History in Chicago for $8.36 million (equivalent to nearly $13.5 million today).

The day after Stan was sold, paleontologist Lindsay Zanno of the North Carolina Museum of Natural Sciences described the sale price as “simply staggering.”

“That’s an astronomical price that borders on absurdity, based on my knowledge of the market,” added paleontologist David Evans, the vertebrate paleontology chair at the Royal Ontario Museum in Toronto, who suggested the anonymous buyer could have spent the same funds in a far more effective way to deepen humanity’s understanding of the prehistoric beasts. “If this kind of money [were] invested properly, it could easily fund 15 permanent dinosaur research positions, or about 80 full field expeditions per year, in perpetuity,” he wrote in an email interview.

Scientists also have raised concerns about the negative ripple effects the sale could have on the study of dinosaurs by incentivizing people to seek out and sell well-preserved fossils rather than leaving them for paleontologists to study. (Find out more about the U.S. fossil trade in National Geographic magazine.)

“This is terrible for science and is a great boost and incentive for commercial outfits to exploit the dinosaur fossils of the American West,” says tyrannosaur expert Thomas Carr, a paleontologist at Carthage College in Kenosha, Wisconsin.

Paleontologists fear that if the buyer turns out to be a private collector, researchers and the public could lose access to the fossil, limiting their ability to repeat results such as measurements of its bones or conduct new analyses with more advanced tools and techniques. (Find out how scientists are reimaging dinosaurs in today’s “golden age” of paleontology.)

The ability to repeat experiments is “a tenet of science; it’s part of our ethical foundation,” Zanno says. “The paleontological world is holding its breath” to find out Stan’s future. …

For years, the Black Hills Institute had Stan on display in its Hill City museum. In addition to selling resin casts to other museums, the institute gave researchers access to the fossil, resulting in a flurry of scientific papers about everything from T. rex’s immense bite force to how the skull of T. rex could flex and move.

“The skeleton of Stan is without doubt one of the very best Tyrannosaurus rex specimens ever found, and it’s been published in the scientific literature many times,” Evans says. “Stan is one of the keystone specimens for understanding T. rex.”

Carr, for one, included Stan in three studies of tyrannosaur diversity and skull shape earlier in his career. He now regrets that decision because the fossil was always in private hands and therefore at risk of being sold. “In the end, I wound up contributing to the successful sales pitch of the fossil … along with the other 45 scientific publications on Stan,” he says. “We shouldn’t have touched it with a 10-foot pole.”

Stan’s path to the auction block began in 2015, when Neal Larson, a 35-percent shareholder in the Black Hills Institute (and brother of the institute’s president, paleontologist Pete Larson), sued the company to liquidate its assets. According to South Dakota’s Rapid City Journal, the company had removed Neal Larson from its board of directors three years earlier, after a bitter dispute over business dealings and his defense of a former employee accused of sexual misconduct.

A judge ruled in 2018 that Stan had to be auctioned off to pay Neal Larson for his stake in the institute, according to a company press release. …

In the U.S., fossil bones found on federal land are public property and can be collected only by researchers with permits. These remains also must stay in the public trust, in approved repositories such as accredited museums.

However, fossils discovered on U.S. private land can be bought and sold, and Stan isn’t the only U.S. dinosaur fossil recently on the auction block. In 2018, the French auctioneer Arguttes sold off a skeleton of the predatory dinosaur Allosaurus, drawing criticism from scientists because its sale, like Stan’s, risked creating the perception that dinosaurs were worth more in dollars than they were in discoveries.

The 2,000-member Society of Vertebrate Paleontology (SVP), which represents paleontologists around the world, opposes fossil auctions and has long discouraged the study of privately held fossils, out of concern that researchers and the public wouldn’t always be guaranteed access to them.

New dinosaur species discovered in Mongolia


This 7 October 2020 video is called Newly discovered species of toothless, two-fingered dinosaur thrived more than 68 million years ago.

From the University of Edinburgh in Scotland:

Toothless dino’s lost digits point to spread of parrot-like species

October 6, 2020

A newly discovered species of toothless, two-fingered dinosaur has shed light on how a group of parrot-like animals thrived more than 68 million years ago.

The unusual species had one less finger on each forearm than its close relatives, suggesting an adaptability which enabled the animals to spread during the Late Cretaceous Period, researchers say.

Multiple complete skeletons of the new species were unearthed in the Gobi Desert in Mongolia by a University of Edinburgh-led team.

Named Oksoko avarsan, the feathered, omnivorous creatures grew to around two metres long and had only two functional digits on each forearm. The animals had a large, toothless beak similar to the type seen in species of parrot today.

The remarkably well-preserved fossils provided the first evidence of digit loss in the three-fingered family of dinosaurs known as oviraptors.

The discovery that they could evolve forelimb adaptations suggests the group could alter their diets and lifestyles, and enabled them to diversify and multiply, the team says.

Researchers studied the reduction in size, and eventual loss, of a third finger across the oviraptors’ evolutionary history. The group’s arms and hands changed drastically in tandem with migrations to new geographic areas — specifically to what is now North America and the Gobi Desert.

The team also discovered that Oksoko avarsan — like many other prehistoric species — were social as juveniles. The fossil remains of four young dinosaurs were preserved resting together.

The study, published in the journal Royal Society Open Science, was funded by The Royal Society and the Natural Sciences and Engineering Council of Canada. It also involved researchers from the University of Alberta and Philip J. Currie Dinosaur Museum in Canada, Hokkaido University in Japan, and the Mongolian Academy of Sciences.

Dr Gregory Funston, of the University of Edinburgh’s School of GeoSciences, who led the study, said: “Oksoko avarsan is interesting because the skeletons are very complete and the way they were preserved resting together shows that juveniles roamed together in groups. But more importantly, its two-fingered hand prompted us to look at the way the hand and forelimb changed throughout the evolution of oviraptors — which hadn’t been studied before. This revealed some unexpected trends that are a key piece in the puzzle of why oviraptors were so diverse before the extinction that killed the dinosaurs.”

How heavy were dinosaurs?


This 2015 video says about itself:

Discovery Dinosaurs Europe

From the Royal Ontario Museum in Canada:

How to weigh a dinosaur

September 1, 2020

How do you weigh a long-extinct dinosaur? A couple of ways, as it turns out, neither of which involve actual weighing — but according to a new study, different approaches still yield strikingly similar results.

New research published September 1 in the journal Biological Reviews involved a review of dinosaur body mass estimation techniques carried out over more than a century.

The findings should give us some confidence that we are building an accurate picture of these prehistoric animals, says study leader Dr. Nicolás Campione — particularly our knowledge of the more massive dinosaurs that have no correlates in the modern world.

“Body size, in particular body mass, determines almost at all aspects of an animal’s life, including their diet, reproduction, and locomotion,” said Dr. Campione, a member of the University of New England’s Palaeoscience Research Centre.

“If we know that we have a good estimate of a dinosaur’s body mass, then we have a firm foundation from which to study and understand their life retrospectively.”

Estimating the mass of a dinosaur like the emblematic Tyrannosaurus rex is no small feat — it is a creature that took its last breath some 66 million years ago and, for the most part, only its bones remain today. It is a challenge that has taxed the ingenuity of palaeobiologists for more than a century. Scientific estimates of the mass of the biggest land predator of all time have differed substantially, ranging from about three tonnes to over 18 tonnes.

The research team led by Dr. Campione compiled and reviewed an extensive database of dinosaur body mass estimates reaching back to 1905, to assess whether different approaches for calculating dinosaur mass were clarifying or complicating the science.

Although a range of different methods to estimating body mass have been tried over the years, they all come down to two fundamental approaches. Scientists have either measured and scaled bones in living animals, such as the circumference of the arm (humerus) and leg (femur) bones, and compared them to dinosaurs; or they have calculated the volume of three-dimensional reconstructions that approximate what the animal may have looked like in real life. Debate over which method is ‘better’ has raged in the literature.

The researchers found that once scaling and reconstruction methods are compared en masse, most estimates agree. Apparent differences are the exception, not the rule.

“In fact, the two approaches are more complementary than antagonistic,” Dr. Campione said.

The bone scaling method, which relies on relationships obtained directly from living animals of known body mass, provides a measure of accuracy, but often of low precision; whereas reconstructions that consider the whole skeleton provide precision, but of unknown accuracy. This is because reconstructions depend on our own subjective ideas about what extinct animals looked like, which have changed appreciably over time.

“There will always be uncertainty around our understanding of long-extinct animals, and their weight is always going to be a source of it,” said Dr. David Evans, Temerty Chair of Vertebrate Palaeontology at the Royal Ontario Museum in Toronto, senior author on the new paper. “Our new study suggests we are getting better at weighing dinosaurs, and it paves the way for more realistic dinosaur body mass estimation in the future.”

The researchers recommend that future work seeking to estimate the sizes of Mesozoic dinosaurs, and other extinct animals, need to better-integrate the scaling and reconstruction approaches to reap their benefits.

Drs. Campione and Evans suggest that an adult T. rex would have weighed approximately seven tonnes — an estimate that is consistent across reconstruction and limb bone scaling approaches alike. But the research emphasizes the inaccuracy of such single values and the importance of incorporating uncertainty in mass estimates, not least because dinosaurs, like humans, did not come in one neat package. Such uncertainties suggest an average minimum weight of five tonnes and a maximum average weight of 10 tonnes for the ‘king’ of dinosaurs.

“It is only through the combined use of these methods and through understanding their limits and uncertainties that we can begin to reveal the lives of these, and other, long-extinct animals,” Dr Campione said.

Male dinosaurs, female dinosaurs and mathematics


This 2001 video is called When Dinosaurs Roamed America.

From the Field Museum in the USA:

Using math to examine the sex differences in dinosaurs

August 26, 2020

Summary: When you only have fossils to go off of, it’s hard to tell which dinosaur traits, like size and ornamentation, are related to the animals’ sex, and which traits are related to other things like age. But a new kind of statistical analysis can often estimate the degree of sexual variation in a dataset of fossils.

Male lions typically have manes. Male peacocks have six-foot-long tail feathers. Female eagles and hawks can be about 30% bigger than males. But if you only had these animals’ fossils to go off of, it would be hard to confidently say that those differences were because of the animals’ sex. That’s the problem that paleontologists face: it’s hard to tell if dinosaurs with different features were separate species, different ages, males and females of the same species, or just varied in a way that had nothing to do with sex. A lot of the work trying to show differences between male and female dinosaurs has come back inconclusive. But in a new paper, scientists show how using a different kind of statistical analysis can often estimate the degree of sexual variation in a dataset of fossils.

“It’s a whole new way of looking at fossils and judging the likelihood that the traits we see correlate with sex,” says Evan Saitta, a research associate at Chicago’s Field Museum and the lead author of the new paper in the Biological Journal of the Linnean Society. “This paper is part of a larger revolution of sorts about how to use statistics in science, but applied in the context of paleontology.”

Unless you find a dinosaur skeleton that contains the fossilized eggs that it was about to lay, or a similar dead giveaway, it’s hard to be sure about an individual dinosaur’s sex. But many birds, the only living dinosaurs, vary a lot between males and females on average, a phenomenon called sexual dimorphism. Dinosaurs’ cousins, the crocodilians, show sexual dimorphism too. So it stands to reason that in many species of dinosaurs, males and females would differ from each other in a variety of traits.

But not all differences in animals of the same species are linked to their sex. For example, in humans, average height is related to sex, but other traits like eye color and hair color don’t neatly map onto men versus women. We often don’t know precisely how the traits we see in dinosaurs relate to their sex, either. Since we don’t know if, say, larger dinosaurs were female, or dinosaurs with bigger crests on their heads were male, Saitta and his colleagues looked for patterns in the differences between individuals of the same species. To do that, they examined measurements from a bunch of fossils and modern species and did a lot of math.

Other paleontologists have tried to look for sexual dimorphism in dinosaurs using a form of statistics (called significance testing, for all you stats nerds) where you collect all your data points and then calculate the probability that those results could have happened by pure chance rather than an actual cause (like how doctors determine whether a new medicine is more helpful than a placebo). This kind of analysis sometimes works for big, clean datasets. But, says Saitta, “with a lot of these dinosaur tests, our data is pretty bad” — there aren’t that many fossil specimens, or they’re incomplete or poorly preserved. Using significance testing in these cases, Saitta argues, results in a lot of false negatives: since the samples are small, it takes an extreme amount of variation between the sexes to trigger a positive test result. (Significance testing isn’t just a consideration for paleontologists — concerns over a “replication crisis” have plagued researchers in psychology and medicine, where certain studies are difficult to reproduce.)

Instead, Saitta and his colleagues experimented with another form of stats, called effect size statistics. Effect size statistics is better for smaller datasets because it attempts to estimate the degree of sex differences and calculate the uncertainty in that estimate. This alternative statistical method takes natural variations into account without viewing dimorphism as black-or-white-many sexual dimorphisms can be subtle. Co-author Max Stockdale of the University of Bristol wrote the code to run the statistical simulations. Saitta and his colleagues uploaded measurements of dinosaur fossils to the program, and it yielded estimates of body mass dimorphism and error bars in those estimates that would have simply been dismissed using significance testing.

“We showed that if you adopt this paradigm shift in statistics, where you attempt to estimate the magnitude of an effect and then put error bars around that, you can often produce a fairly accurate estimate of sexual variation even when the sexes of the individuals are unknown,” says Saitta.

For instance, Saitta and his colleagues found that in the dinosaur Maiasaura, adult specimens vary a lot in size, and the analyses show that these are likelier to correspond to sexual variation than differences seen in other dinosaur species. But while the current data suggest that one sex was about 45% bigger than the other, they can’t tell if the bigger ones are males or females.

While there’s a lot of work yet to be done, Saitta says he’s excited that the statistical simulations gave such consistent results despite the limits of the fossil data.

“Sexual selection is such an important driver of evolution, and to limit ourselves to ineffective statistical approaches hurts our ability to understand the paleobiology of these animals,” he says. “We need to account for sexual variation in the fossil record.”

“I’m happy to play a small part in this sort of statistical revolution,” he adds. “Effect size statistics has a major impact for psychological and medical research, so to apply it to dinosaurs and paleontology is really cool.”

Sauropod dinosaurs had rhino-like horns, embryos show


This 2016 video from the American Museum of Natural History in the USA says about itself:

Measuring 122 feet, the Museum’s new exhibit, The Titanosaur, is big–so big that its head extends outside of the Museum’s fourth-floor gallery where it is now on permanent display.

This species of dinosaur, a giant herbivore that belongs to a group known as titanosaurs, is so new that it has not yet been formally named by the paleontologists who discovered it. The Titanosaur lived in the forests of today’s Patagonia about 100 to 95 million years ago, during the Late Cretaceous period, and weighed 70 tons. It is one of the largest dinosaurs ever discovered.

The fossils on which this cast is based were excavated in the Patagonian desert region of Argentina by a team from the Museo Paleontologico Egidio Feruglio led by José Luis Carballido and Diego Pol, who received his Ph.D. at the American Museum of Natural History.

In this video, Dr. Mark Norell, chair and Macaulay Curator in the Division of Paleontology, describes how such a massive animal could have supported its own weight and why the Titanosaur is one of the more spectacular finds during what he describes as “the golden age of paleontology.”

From the University of Manchester in England:

Newly discovered rare dinosaur embryos show sauropods had rhino-like horns

August 27, 2020

An incredibly rare dinosaur embryo discovered perfectly preserved inside its egg has shown scientists new details of the development and appearance of sauropods which lived 80 million years ago.

Sauropods were the giant herbivores made famous as being ‘veggie-saurs’ in the 1993 film Jurassic Park. The incredible new find of an intact embryo has shown for the first time that these dinosaurs had stereoscopic vision and a horn on the front of the face which was then lost in adulthood.

The international research team say that this is the most complete and articulate skull known from any titanosaur, the last surviving group of long-necked sauropods and largest land animals known to have ever existed.

The sauropod egg was discovered in Patagonia, Argentina, in an area not previously known to provide evidence of dinosaur fossils. It was imperative the egg was repatriated to Argentina however as it is illegal to permanently remove fossils from the country.

Dr John Nudds from The University of Manchester said: “The preservation of embryonic dinosaurs preserved inside their eggs is extremely rare. Imagine the huge sauropods from Jurassic Park and consider that the tiny skulls of their babies, still inside their eggs, are just a couple of centimetres long.

“We were able to reconstruct the embryonic skull prior to hatching. The embryos possessed a specialised craniofacial anatomy that precedes the post-natal transformation of the skull in adult sauropods. Part of the skull of these embryonic sauropods was extended into an elongated snout or horn, so that they possessed a peculiarly shaped face.”

The examination of the amazing specimen enabled the team to revise opinions of how babies of these giant dinosaurs may be hatched and to test previously held ideas about sauropodomorph reproduction. The elongated horn is now thought to have been used as an ‘egg tooth’ on hatching to allow babies to break through their shell.

The findings, published today in Current Biology, were the result of a novel technique to reveal embryonic dinosaurs in their shells. The embryo within the egg was revealed by carefully dissolving the egg around it using an acid preparation. The team were then able to perform a virtual dissection of the specimen at the European Synchrotron Radiation Facility (ESRF) in Grenoble.

Sauropod embryology remains one of the least explored areas of the life history of dinosaurs. The first definitive discovery of sauropod embryos came with the finding of an enormous nesting ground of titanosaurian dinosaurs discovered in Upper Cretaceous deposits of northern Patagonia, Argentina, 25 years ago. This new discovery however, is the first time a fully intact embryo has been able to be studied.

Other eggs were also found at the Argentinian site which the scientists now aim to examine in a similar fashion. It is thought that some of the eggs could contain well-preserved dinosaur skin which could help further piece together the mysteries of some of the most fascinating animals to ever walk the Earth.

How dinosaurs can help doctors


This 16 December 2020 video from the USA says about itself:

Jurassic World Explorers: WORLD’S BIGGEST T-REX

On this episode of Jurassic World Explorers, Coyote, Mark, and Mario team up with Jurassic World Franchise paleontologist Brian Switek, to take a look at the skeletal remains from some of the film’s most iconic dinosaurs.

With the Chicago Field Museum’s Hall of Dinosaurs as their prehistoric themed backdrop, we travel from the Jurassic and into the Cretaceous, where ultimately the team gets an exclusive visit with SUE. Hailing as the biggest, best-preserved and most complete T-Rex skeleton ever unearthed, the team is granted special access to film the skeleton while its new exhibit is under construction. We are proud to announce that SUE’s new exhibit within the museum’s Griffin Halls of Evolving Planet will officially be open to the public beginning Friday, December 21, 2018.

From the University of Bonn in Germany:

How dinosaur research can help medicine

Even Tyrannosaurus rex could have suffered a slipped disc

August 24, 2020

The intervertebral discs connect the vertebrae and give the spine its mobility. The disc consists of a cartilaginous fibrous ring and a gelatinous core as a buffer. It has always been assumed that only humans and other mammals have discs. A misconception, as a research team under the leadership of the University of Bonn has now discovered: Even Tyrannosaurus rex could have suffered a slipped disc. The results have now been published in the journal “Scientific Reports”.

Present-day snakes and other reptiles do not have intervertebral discs; instead, their vertebrae are connected with so-called ball-and-socket joints. Here, the ball-shaped end surface of a vertebra fits into a cup-shaped depression of the adjacent vertebra, similar to a human hip joint. In-between there is cartilage and synovial fluid to keep the joint mobile. This evolutionary construction is good for today’s reptiles, because it prevents the dreaded slipped disc, which is caused by parts of the disc slipping out into the spinal canal.

“I found it hard to believe that ancient reptiles did not have intervertebral discs,” says paleontologist Dr. Tanja Wintrich from the Section Paleontology in the Institute of Geosciences of the University of Bonn. She noticed that the vertebrae of most dinosaurs and ancient marine reptiles look very similar to those of humans — that is, they do not have ball-and-socket joints. She therefore wondered whether extinct reptiles had intervertebral discs, but had “replaced” these with ball-and-socket joints in the course of evolution.

Comparison of the vertebrae of dinosaurs with animals still alive today

To this end, the team of researchers led by Tanja Wintrich and with the participation of the University of Cologne and the TU Bergakademie Freiberg as well as researchers from Canada and Russia examined a total of 19 different dinosaurs, other extinct reptiles, and animals still alive today. The researchers concluded that intervertebral discs not only occur in mammals. For these investigations, vertebrae still in connection were analyzed using various methods.

Surprisingly, Dr. Wintrich has now also been able to demonstrate that remnants of cartilage and even other parts of the intervertebral disc are almost always preserved in such ancient specimens, including marine reptiles like ichthyosaurs and dinosaurs like Tyrannosaurus. She then traced the evolution of the soft tissues between the vertebrae along the family tree of land animals, which 310 million years ago split into the mammalian line and the dinosaur and bird line.

Intervertebral discs emerged several times during evolution

It was previously unknown that intervertebral discs are a very ancient feature. The findings also show that intervertebral discs evolved several times during evolution in different animals, and were probably replaced by ball-and-socket joints twice in reptiles. “The reason why the intervertebral disc was replaced might be that it is more susceptible to damage than a ball-and-socket joint,” says Dr. Wintrich. Nonetheless, mammals have always retained intervertebral discs, repeating the familiar pattern that they are rather limited in their evolutionary flexibility. “This insight is also central to the medical understanding of humans. The human body is not perfect, and its diseases reflect our long evolutionary history,” adds paleontologist Prof. Dr. Martin Sander from the University of Bonn.

In terms of research methods, the team drew not only on paleontology, but also on medical anatomy, developmental biology and zoology. Under the microscope, dinosaur bones cut with a rock saw and then ground very thinly provide information comparable to histological sections of fixed and embedded tissue of extant animals. This makes it possible to bridge the long periods of evolution and identify developmental processes. Prof. Sander remarks: “It’s truly amazing that the cartilage of the joint and apparently even the disc itself can survive for hundreds of millions of years.”

Dr. Wintrich, who now works at the Institute of Anatomy of the University of Bonn, is pleased about the cooperation between the fields that has made this interdisciplinary understanding possible in the first place: “We found that even Tyrannosaurus rex was not protected against slipped discs.” Only bird-like predatory dinosaurs then evolved ball-and-socket joints as well and saddle joints, still seen in today’s birds. Likewise, such ball-and-socket joints were a decisive advantage for the stability of the spine of the largest dinosaurs, the long-necked dinosaurs.

This bridge between paleontology and medicine is seminal in Germany. The anatomist Prof. Dr. Karl Schilling from the University of Bonn, who was not involved in the new study, reports: “In the USA, in contrast, dinosaur researchers and evolutionary biologists are often closely involved in medical training, especially in anatomy and embryology. This gives young doctors a perspective that is becoming increasingly important in a rapidly changing environment.”

Birds evolved more slowly than dinosaurs


This May 2018 video says about itself:

An asteroid strike 66 million years ago devastated the dinosaurs. But today’s birds are proof there were a few survivors.

From PLOS:

Bird skull evolution slowed after the extinction of the dinosaurs

A detailed analysis of skull morphology shows non-avian dinosaurs evolved more rapidly than birds

August 18, 2020

From emus to woodpeckers, modern birds show remarkable diversity in skull shape and size, often hypothesized to be the result of a sudden hastening of evolution following the mass extinction that killed their non-avian dinosaur cousins at the end of the Cretaceous 66 million years ago. But this is not the case according to a study by Ryan Nicholas Felice at University College London, publishing August 18, 2020 in the open-access journal PLOS Biology. In the most detailed study yet of bird skull morphology, Felice and an international team of researchers show that the rate of evolution actually slowed in birds compared to non-avian dinosaurs.

The researchers used high-dimensional 3D geometric morphometrics to map the shape of 354 living and 37 extinct avian and non-avian dinosaurs in unprecedented detail and performed phylogenetic analyses to test for a shift in the pace of evolution after the origin of birds. They found that all regions of the skull evolved more rapidly in non-avian dinosaurs than in birds, but certain regions showed rapid pulses of evolution in particular lineages.

For example, in non-avian dinosaurs, rapid evolutionary changes in the jaw joint were associated with changes in diet, while accelerated evolution of the roof of the skull occurred in lineages that sported bony ornaments such as horns or crests. In birds, the most rapidly evolving part of the skull was the beak, which the authors attribute to adaptation to different food sources and feeding strategies.

The authors say that overall slower pace of evolution in birds compared to non-avian dinosaurs calls into question a long-standing hypothesis that the diversity seen in modern birds resulted from rapid evolution as part of an adaptive radiation following the end-Cretaceous extinction event.

Dinosaurs’ bones helped to carry weight


This December 2019 video is called Dinosaurs V : Ornithischia – Hadrosaurs.

From Southern Methodist University in the USA:

Dinosaurs’ unique bone structure key to carrying weight

Trabecular structure different than mammals, birds

August 20, 2020

Summary: A unique collaboration between paleontologists, mechanical engineers and biomedical engineers revealed that the trabecular bone structure of hadrosaurs and several other dinosaurs is uniquely capable of supporting large weights, and different than that of mammals and birds.

Weighing up to 8,000 pounds, hadrosaurs, or duck-billed dinosaurs were among the largest dinosaurs to roam the Earth. How did the skeletons of these four-legged, plant-eating dinosaurs with very long necks support such a massive load?

New research recently published in PLOS ONE offers an answer. A unique collaboration between paleontologists, mechanical engineers and biomedical engineers revealed that the trabecular bone structure of hadrosaurs and several other dinosaurs is uniquely capable of supporting large weights, and different than that of mammals and birds.

“The structure of the trabecular, or spongy bone that forms in the interior of bones we studied is unique within dinosaurs,” said Tony Fiorillo, SMU paleontologist and one of the study authors. The trabecular bone tissue surrounds the tiny spaces or holes in the interior part of the bone, Fiorillo says, such as what you might see in a ham or steak bone.

“Unlike in mammals and birds, the trabecular bone does not increase in thickness as the body size of dinosaurs increase,” he says. “Instead it increases in density of the occurrence of spongy bone. Without this weight-saving adaptation, the skeletal structure needed to support the hadrosaurs would be so heavy, the dinosaurs would have had great difficulty moving.”

The interdisciplinary team of researchers used engineering failure theories and allometry scaling, which describes how the characteristics of a living creature change with size, to analyze CT scans of the distal femur and proximal tibia of dinosaur fossils.

The team, funded by the National Science Foundation Office of Polar Programs and the National Geographic Society, is the first to use these tools to better understand the bone structure of extinct species and the first to assess the relationship between bone architecture and movement in dinosaurs. They compared their findings to scans of living animals, such as Asian elephants and extinct mammals such as mammoths.

“Understanding the mechanics of the trabecular architecture of dinosaurs may help us better understand the design of other lightweight and dense structures,” said Trevor Aguirre, lead author of the paper and a recent mechanical engineering Ph.D. graduate of Colorado State University.

The idea for the study began ten years ago, when Seth Donahue, now a University of Massachusetts biomedical engineer and expert on animal bone structure, was invited to attend an Alaskan academic conference hosted by Fiorillo and other colleagues interested in understanding dinosaurian life in the ancient Arctic. That’s where Fiorillo first learned of Donahue’s use of CT scans and engineering theories to analyze the bone structure of modern animals.

“In science we rarely have lightning bolt or ‘aha’ moments,” Fiorillo says. “Instead we have, ‘huh?’ moments that often are not close to what we envisioned, but instead create questions of their own.”

Applying engineering theories to analyze dinosaur fossils and the subsequent new understanding of dinosaurs’ unique adaptation to their huge size grew from the ‘huh?’ moment at that conference.

New Isle of Wight, England, dinosaur discovery


This 13 August 2020 video says about itself:

A new species of dinosaur has been discovered in the UK! Four bones were found last year on a beach off England’s south coast and after careful examination, scientists now reckon it’s a new dino. It’s called the Vectaerovenator inopinatus, which translates to the air-filled hunter.

Researchers say it is a theropod dinosaur that lived in the Cretaceous period 115 million years ago which means it’s a relative of modern-day birds and arguably the most famous dino – the Tyrannosaurus rex! Researchers say they’re still learning more about the new species and are hoping for some more beachside discoveries to help them put the pieces together.

From the University of Southampton in England:

New species of dinosaur discovered on Isle of Wight

August 11, 2020

A new study by palaeontologists at the University of Southampton suggests four bones recently found on the Isle of Wight belong to new species of theropod dinosaur, the group that includes Tyrannosaurus rex and modern-day birds.

The dinosaur lived in the Cretaceous period 115 million years ago and is estimated to have been up to four metres long.

The bones were discovered on the foreshore at Shanklin last year and are from the neck, back and tail of the new dinosaur, which has been named Vectaerovenator inopinatus.

The name refers to the large air spaces in some of the bones, one of the traits that helped the scientists identify its theropod origins. These air sacs, also seen in modern birds, were extensions of the lung, and it is likely they helped fuel an efficient breathing system while also making the skeleton lighter.

The fossils were found over a period of weeks in 2019 in three separate discoveries, two by individuals and one by a family group, who all handed in their finds to the nearby Dinosaur Isle Museum at Sandown.

The scientific study has confirmed the fossils are very likely to be from the same individual dinosaur, with the exact location and timing of the finds adding to this belief.

Robin Ward, a regular fossil hunter from Stratford-upon-Avon, was with his family visiting the Isle of Wight when they made their discovery. He said: “The joy of finding the bones we discovered was absolutely fantastic. I thought they were special and so took them along when we visited Dinosaur Isle Museum. They immediately knew these were something rare and asked if we could donate them to the museum to be fully researched.”

James Lockyer, from Spalding, Lincolnshire was also visiting the Island when he found another of the bones. Also a regular fossil hunter, he said: “It looked different from marine reptile vertebrae I have come across in the past. I was searching a spot at Shanklin and had been told and read that I wouldn’t find much there. However, I always make sure I search the areas others do not, and on this occasion, it paid off.”

Paul Farrell, from Ryde, Isle of Wight, added: “I was walking along the beach, kicking stones and came across what looked like a bone from a dinosaur. I was really shocked to find out it could be a new species.”

After studying the four vertebrae, paleontologists from the University of Southampton confirmed that the bones are likely to belong to a genus of dinosaur previously unknown to science. Their findings will be published in the journal Papers in Palaeontology, in a paper co-authored by those who discovered the fossils.

Chris Barker, a PhD student at the university who led the study, said: “We were struck by just how hollow this animal was — it’s riddled with air spaces. Parts of its skeleton must have been rather delicate.

“The record of theropod dinosaurs from the ‘mid’ Cretaceous period in Europe isn’t that great, so it’s been really exciting to be able to increase our understanding of the diversity of dinosaur species from this time.

“You don’t usually find dinosaurs in the deposits at Shanklin as they were laid down in a marine habitat. You’re much more likely to find fossil oysters or driftwood, so this is a rare find indeed.”

It is likely that the Vectaerovenator lived in an area just north of where its remains were found, with the carcass having washed out into the shallow sea nearby.

Chris Barker added: “Although we have enough material to be able to determine the general type of dinosaur, we’d ideally like to find more to refine our analysis. We are very grateful for the donation of these fossils to science and for the important role that citizen science can play in palaeontology.”

The Isle of Wight is renowned as one of the top locations for dinosaur remains in Europe, and the new Vectaerovenator fossils will now go on display at the Dinosaur Isle Museum at Sandown, which houses an internationally important collection.

Museum curator, Dr Martin Munt, said: “This remarkable discovery of connected fossils by three different individuals and groups will add to the extensive collection we have and it’s great we can now confirm their significance and put them on display for the public to marvel at.

“We continue to undertake public field trips from the museum and would encourage anyone who finds unusual fossils to bring them in so we can take a closer look. However, fossil hunters should remember to stick to the foreshore, and avoid going near the cliffs which are among the most unstable on the Island.”

Isle of Wight Council Cabinet member for environment and heritage, Councillor John Hobart, said: “This is yet another terrific fossil find on the Island which sheds light on our prehistoric past — all the more so that it is an entirely new species. It will add to the many amazing items on display at the museum.”

Some dinosaurs became birds, some didn’t


This March 2016 video from the American Museum of Natural History says about itself:

This spellbinding animation from the American Museum of Natural History’s exhibition “Dinosaurs Among Us” traces the evolutionary transition from dinosaurs to birds.

Based on recent scientific research that examines fossils using new technologies, the transformation story unfolds as low-polygonal silhouettes of dinosaurs morph from ground-dwelling animals into flight-capable birds.

The mass extinction that erased most dinosaurs 65 million years ago left a few bird lineages unscathed. Within only 15 million years all of our familiar bird groups were flourishing. These extraordinary living dinosaurs provide a vivid link to the ancient past.

The Museum’s exhibition, “Dinosaurs Among Us,” explored the continuities between living dinosaurs—birds—and their extinct ancestors, showcasing remarkable new evidence for what scientists now call one of the best-documented evolutionary transitions in the history of life.

The Museum gratefully acknowledges the Richard and Karen LeFrak Exhibition and Education Fund.

From The University of Hong Kong:

Most close relatives of birds neared the potential for powered flight but few crossed its thresholds

August 11, 2020

Uncertainties in the evolutionary tree of birds and their closest relatives have impeded deeper understanding of early flight in theropods, the group of dinosaurs that includes birds. To help address this, an international study led by HKU Research Assistant Professor Dr. Michael Pittman (Vertebrate Palaeontology Laboratory, Division of Earth and Planetary Science & Department of Earth Sciences) and co-first-authored by his former Postdoctoral Fellow Dr. Rui Pei (now an Associate Professor at the Institute of Vertebrate Paleontology and Paleoanthropology, Beijing), produced an updated evolutionary tree of early birds and their closest relatives to reconstruct powered flight potential, showing it evolved at least three times. Many ancestors of the closest bird relatives neared the thresholds of powered flight potential, suggesting broad experimentation with wing-assisted locomotion before flight evolved.

“Our revised evolutionary tree supports the traditional relationship of dromaeosaurid (“raptors“) and troodontid theropods as the closest relatives of birds. It also supports the status of the controversial anchiornithine theropods as the earliest birds,” said Dr. Pei. With this improved evolutionary tree, the team reconstructed the potential of bird-like theropods for power flight, using proxies borrowed from the study flight in living birds. The team found that the potential for powered flight evolved at least three times in theropods: once in birds and twice in dromaeosaurids. “The capability for gliding flight in some dromaeosaurids is well established so us finding at least two origins of powered flight potential among dromaeosaurids is really exciting,” said Dr. Pittman. Crucially, the team found that many ancestors of bird relatives neared the thresholds of powered flight potential. “This suggests that theropod dinosaurs broadly experimented with the use of their feathered wings before flight evolved, overturning the paradigm that this was limited to a much more exclusive club,” added Dr. Pittman.

This study is the latest in the Vertebrate Palaeontology Laboratory’s long-term research into the evolution of early birds and their closest relatives (see Notes). Asked about future plans, Dr. Pittman replied: “We have helped to better constrain the broader functional landscape of theropods just before flight evolved and in its earliest stages. We plan to now focus on the dromaeosaurids and early birds that we have shown to have the potential for powered flight to improve our understanding of what it took to fly and why.”