Oviraptor dinosaurs, not egg thieves


This 16 October 2019 video says about itself:

The Case of the Dinosaur Egg Thief

Paleontologists found a small theropod dinosaur skull right on top of a nest of eggs that were believed to belong to a plant-eating dinosaur. Instead of being the nest robbers that they were originally thought to be, [Oviraptor] raptors like this one would reveal themselves to actually be caring parents.

Advertisements

Velociraptor relative dinosaur discovery in Canada


This 2009 video says about itself:

Tribute to Saurornitholestes

Saurornitholestes (“lizard-bird thief”) is a genus of coyote-sized carnivorous dromaeosaurid dinosaur from the Upper Cretaceous (Upper Campanian stage) of Alberta, Canada. Several partial skeletons, dozens of isolated bones, and scores of teeth are known from the badlands of Dinosaur Provincial Park in Alberta; most of these are housed at the Royal Tyrrell Museum of Palaeontology, in Drumheller, Alberta.

Like other theropods in the family Dromaeosauridae, Saurornitholestes had a long, curving, blade-like claw on the second toe. Saurornitholestes was more long-legged and lightly built than other dromaeosaurids such as Velociraptor and Dromaeosaurus. It resembles Velociraptor in having large, fanglike teeth in the front of the jaws. Saurornitholestes most closely resembles Velociraptor, although the precise relationships of the Dromaeosauridae are still relatively poorly understood.

Saurornitholestes appears to have been the most common small theropod in Dinosaur Provincial Park, and teeth and bones are much more common than those of its more massive contemporary, Dromaeosaurus. Little is known about what it ate and how it lived, but a tooth of Saurornitholestes has been found embedded in the wing bone of a large pterosaur, probably a juvenile Quetzalcoatlus. Because the pterosaur was so much larger than Saurornitholestes, Currie and Jacobsen suggest that the theropod was probably scavenging the remains of an already dead animal.

Similar teeth are found in younger deposits, but whether they represent S. langstoni or a different, related species is unknown.

From the University of Alberta in Canada:

Paleontologists discover complete Saurornitholestes langstoni specimen

Discovery provides valuable insight into evolution of theropod dinosaurs around the world

October 17, 2019

The discovery of a nearly complete dromaeosaurid Saurornitholestes langstoni specimen is providing critical information for the evolution of theropod dinosaurs, according to new research by a University of Alberta paleontologist.

The 76-million-year-old species was long thought to be so closely related to Velociraptor from Mongolia that some researchers even called it Velociraptor langstoni — until now.

The landmark discovery was made by paleontologists Philip Currie and Clive Coy from the University of Alberta and David Evans, James and Louise Temerty Endowed Chair of Vertebrate Palaeontology at the Royal Ontario Museum. The research illustrates how Saurornitholestes differs from Velociraptor. Importantly, the research also identifies a unique tooth evolved for preening feathers and provides new evidence that the dromaeosaurid lineage from North America that includes Saurornitholestes is distinct from an Asian lineage that includes the famous Velociraptor.

“Palaeontology in general is a gigantic puzzle where most of the pieces are missing. The discovery and description of this specimen represents the recovery of many pieces of the puzzle,” said Currie, professor in the Department of Biological Sciences and Canada Research Chair in Dinosaur Paleobiology. “This ranks in the top discoveries of my career. It is pretty amazing.”

Another piece of the puzzle

Saurornitholestes is a small, feathered carnivorous dinosaur within the dromaeosaurid family (also known as “raptors“) that was previously known from fragmentary remains. Discovered by Coy in Dinosaur Provincial Park in 2014, the new skeleton is remarkably complete and exquisitely preserved, with all the bones (except for the tail) preserved in life position. The new research, which focuses on the skull, shows that the North American form has a shorter and deeper skull than the Velociraptor. At the front of the skull’s mouth, the researchers also discovered a flat tooth with long ridges, which was likely used for preening feathers. The same tooth has since been identified in Velociraptor and other dromaeosaurids.

“Because of their small size and delicate bones, small meat-eating dinosaur skeletons are exceptionally rare in the fossil record. The new skeleton is by far the most complete and best-preserved raptor skeleton ever found in North America. It’s a scientific goldmine,” said Evans.

The study also establishes a distinction between dromaeosaurids in North America and Asia. “The new anatomical information we have clearly shows that the North American dromaeosaurids are a separate lineage from the Asian dromaeosaurids, although they do have a common ancestor,” said Currie. “This changes our understanding of intercontinental movements of these animals and ultimately will help us understand their evolution.”

Future research will investigate the remainder of the skeleton as well as additional analyses on the relationships between dromaeosaurids.

How big dinosaurs survived heat


This 16 September 2018 video says about itself:

The Biggest Dinosaurs Of All Time

Dinosaurs are some of the biggest land-dwelling animals to ever exist on Earth. When you picture a dinosaur, you might imagine a 13-meter long T. rex or a Titanosaur the size of an airplane. But the first dinosaurs would have only come up to your knee. It turns out that sauropods, like Brontosaurus, developed special adaptations that allowed them to tower over the competition.

From Ohio University in the USA:

Huge dinosaurs evolved different cooling systems to combat heat stroke

Researchers use 3D imaging to discover multiple heat exchangers in dinosaur heads

October 16, 2019

Different dinosaur groups independently evolved gigantic body sizes, but they all faced the same problems of overheating and damaging their brains. Researchers from Ohio University’s Heritage College of Osteopathic Medicine show in a new article in the Anatomical Record that different giant dinosaurs solved the problem in different ways, evolving different cooling systems in different parts of the head.

“The brain and sense organs like the eye are very sensitive to temperature,” said Ruger Porter, Assistant Professor of Anatomical Instruction and lead author of the study. “Animals today often have elaborate thermoregulatory strategies to protect these tissues by shuttling hot and cool blood around various networks of blood vessels. We wanted to see if dinosaurs were doing the same things.”

Many of the famous gigantic dinosaurs — such as the long-necked sauropods or armored ankylosaurs — actually evolved those big bodies independently from smaller-bodied ancestors. “Small dinosaurs could have just run into the shade to cool off,” said study co-author Professor Lawrence Witmer, “but for those giant dinosaurs, the potential for overheating was literally inescapable. They must have had special mechanisms to control brain temperature, but what were they?”

The answer turned out to be based in physics, but still part of our everyday experience. “One of the best ways to cool things down is with evaporation,” Porter said. “The air-conditioning units in buildings and cars use evaporation, and it’s the evaporative cooling of sweat that keeps us comfortable in summer. To cool the brain, we looked to the anatomical places where there’s moisture to allow evaporative cooling, such as the eyes and especially the nasal cavity and mouth.”

To test that idea, the team looked to the modern-day relatives of dinosaurs — birds and reptiles — where studies indeed showed that evaporation of moisture in the nose, mouth, and eyes cooled the blood on its way to the brain.

Porter and Witmer obtained carcasses of birds and reptiles that had died of natural causes from zoos and wildlife rehabilitation facilities. Using a technique developed in Witmer’s lab that allows arteries and veins to show up in CT scans, they were able to trace blood flow from the sites of evaporative cooling to the brain. They also precisely measured the bony canals and grooves that conveyed the blood vessels.

“The handy thing about blood vessels is that they basically write their presence into the bones,” Porter said. “The bony canals and grooves that we see in modern-day birds and reptiles are our link to the dinosaur fossils. We can use this bony evidence to restore the patterns of blood flow in extinct dinosaurs and hopefully get a glimpse into their thermal physiology and how they dealt with heat.”

“The discovery that different dinosaurs cooled their brains in a variety of ways not only provides a window into the everyday life of dinosaurs, it also serves as an exemplar of how the physical constraints imposed by specific environmental conditions have shaped the evolution of this diverse and unique group,” said Sharon Swartz, a program director at the National Science Foundation, which funded the research. “Using a combination of technological innovation and biological expertise, these researchers were able to take a direct reading from the fossil record that provides new clues about how dinosaur skeletal form and function evolved.”

This team of current and former members of WitmerLab at Ohio University has previously looked at other cases of dinosaur physiology. In 2014 and 2018, former doctoral student Jason Bourke led projects involving Porter and Witmer on breathing and heat exchange in pachycephalosaurs and ankylosaurs, respectively. Most recently, former lab doctoral student Casey Holliday led a project with Porter and Witmer that explored blood vessels on the skull roof of T. rex and other dinosaurs that also might have had a thermoregulatory function.

The new study by Porter and Witmer is a more expansive, quantitative study that shows that “one size didn’t fit all” with regard to how large-bodied dinosaurs kept their brains cool. That is, they had different thermoregulatory strategies. The researchers looked at bony canal sizes in the dinosaurs to assess the relative importance of the different sites of evaporative cooling based on how much blood was flowing through them.

A key factor turned out to be body size. Smaller dinosaurs such as the goat-sized pachycephalosaur Stegoceras had a very balanced vascular pattern with no single cooling region being particularly emphasized. “That makes physiological sense because smaller dinosaurs have less of a problem with overheating,” Porter said. “But giants like sauropods and ankylosaurs increased blood flow to particular cooling regions of the head far beyond what was necessary to simply nourish the tissues.” This unbalanced vascular pattern allowed the thermal strategies of large dinosaurs to be more focused, emphasizing one or more cooling regions.

But although sauropods like Diplodocus and Camarasaurus and ankylosaurs like Euoplocephalus all had unbalanced vascular patterns emphasizing certain cooling regions, they still differed. Sauropods emphasized both the nasal cavity and mouth as cooling regions whereas ankylosaurs only emphasized the nose. “It’s possible that sauropods were so large — often weighing dozens of tons — that they needed to recruit the mouth as a cooling region in times of heat stress,” Porter said. “Panting sauropods may have been a common sight!”

One problem that the researchers encountered was that many of the theropod dinosaurs — such as the 10-ton T. rex — were also gigantic, but the quantitative analysis showed that they had a balanced vascular pattern, like the small-bodied dinosaurs.

“This finding had us scratching our heads until we noticed the obvious difference — theropods like Majungasaurus and T. rex had a huge air sinus in their snouts,” Witmer said. Looking closer, the researchers discovered bony evidence that this antorbital air sinus was richly supplied with blood vessels. Witmer had previously shown that air circulated through the antorbital air sinus like a bellows pump every time the animal opened and closed its mouth. “Boom! An actively ventilated, highly vascular sinus meant that we had another potential cooling region. Theropod dinosaurs solved the same problem…but in a different way,” concluded Witmer.

The researchers are now expanding the project to include other dinosaur groups such as duck-billed hadrosaurs and horned ceratopsians like Triceratops to explore how thermoregulatory strategies varied among other dinosaurs and how these strategies may have influenced their behavior and even their preferred habitats.

The research was funded by National Science Foundation (NSF) grants to Witmer (part of the Visible Interactive Dinosaur Project), as well as by the Ohio University Heritage College of Osteopathic Medicine.

New big dinosaur species discovered in Thailand


Siamraptor suwati reconstruction

From PLOS:

Meet Siamraptor suwati, a new species of giant predatory dinosaur from Thailand

Siamraptor provides a new glimpse at the early evolution of carcharodontosaurian dinosaurs

October 9, 2019

Fossils discovered in Thailand represent a new genus and species of predatory dinosaur, according to a study released October 9, 2019 in the open-access journal PLOS ONE by Duangsuda Chokchaloemwong of Nakhon Ratchasima Rajabhat University, Thailand and colleagues.

Carcharodontosaurs were a widespread and successful group of large predatory dinosaurs during the Jurassic and Cretaceous Periods and were important members of ecosystems on multiple continents. However, the fossil record of these animals is notably lacking from the Early Cretaceous of Asia, with no definite carcharodontosaurs known from Southeast Asia.

In this study, Chokchaloemwong and colleagues describe fossil material from the Khok Kruat geologic formation in Khorat, Thailand, dating to the Early Cretaceous. These fossils include remains of the skull, backbone, limbs, and hips of at least four individual dinosaurs, and morphological comparison with known species led the authors to identify these remains as belonging to a previously unknown genus and species of carcharodontosaur which they named Siamraptor suwati.

Phylogenetic analysis indicates that Siamraptor is a basal member of the carcharodontosaurs, meaning it represents a very early evolutionary split from the rest of the group. It is also the first definitive carcharodontosaur known from Southeast Asia, and combined with similarly-aged finds from Europe and Africa, it reveals that this group of dinosaurs had already spread to three continents by the Early Cretaceous.

How Tyrannosaurus rex bit, new research


This October 2018 video says about itself:

The team working on Saurian have just revealed their massive, year-long project in a blog post; the complete redesigning of their game’s T. rex. And it might be the most accurate Tyrannosaurus anyone’s ever created.

From the University of Missouri-Columbia in the USA:

T. rex used a stiff skull to eat its prey

3D models shows how ligaments and joints in the skull of a Tyrannosaurus rex work

September 25, 2019

A Tyrannosaurus rex could bite hard enough to shatter the bones of its prey. But how it accomplished this feat without breaking its own skull bones has baffled paleontologists. That’s why scientists at the University of Missouri are arguing that the T. rex’s skull was stiff much like the skulls of hyenas and crocodiles, and not flexible like snakes and birds as paleontologists previously thought.

“The T. rex had a skull that’s 6 feet long, 5 feet wide and 4 feet high, and bites with the force of about 6 tons,” said Kaleb Sellers, a graduate student in the MU School of Medicine. “Previous researchers looked at this from a bone-only perspective without taking into account all of the connections — ligaments and cartilage — that really mediate the interactions between the bones.”

Using a combination of imaging, anatomy and engineering analysis, the team observed how the roof of the mouth of the T. rex reacted to the stresses and strains from chewing by applying models of how two present day relatives of T. rex — a gecko and a parrot — chew to how the T. rex skull worked.

“Dinosaurs are like modern-day birds, crocodiles and lizards in that they inherited particular joints in their skulls from fish — ball and socket joints, much like people’s hip joints — that seem to lend themselves, but not always, to movement like in snakes,” said Casey Holliday, an associate professor of anatomy in the MU School of Medicine. “When you put a lot of force on things, there’s a tradeoff between movement and stability. Birds and lizards have more movement but less stability. When we applied their individual movements to the T. rex skull, we saw it did not like being wiggled in ways that the lizard and bird skulls do, which suggests more stiffness.”

In addition to helping paleontologists with a detailed study of the anatomy of fossilized animals, researchers believe their findings can help advance human and animal medicine by providing better models of how joints and ligaments interact.

“In humans, this can also be applied to how people’s jaws work, such as studying how the jaw joint is loaded by stresses and strains during chewing,” said Ian Cost, the lead researcher on the study. Cost is an assistant professor at Albright College and a former doctoral student in the MU School of Medicine. “In animals, understanding how those movements occur and joints are loaded will, for instance, help veterinarians better understand how to treat exotic animals such as parrots, which suffer from arthritis in their faces.”

Triassic herbivorous dinosaurs threatened by predators


This BBC video is called Walking with Dinosaurs – “Postosuchus“.

Postosuchus was a Triassic carnivorous rauisuchid reptile.

From the University of the Witwatersrand in South Africa:

Croc-like carnivores terrorized Triassic dinosaurs in southern Africa 210 million years ago

Rauisuchians fed on vegetarian dinosaurs

September 23, 2019

Summary: Giant, predatory croc-like animals that lived during the Triassic period in southern Africa preyed on early dinosaurs and mammal relatives 210 million years ago. These predators, known as ‘rauisuchians’ preyed on early herbivore dinosaurs and … mammal relatives living at the time.

“These ancient fossils provide us with evidence of how at least two predator species hunted these vegetarian dinosaurs 210 million-years-ago. It is amazing to follow the clues left behind in fossilised teeth, jaws, limbs and other fossils to help us tell the ancient story of life in southern Africa,” says Tolchard.

The fossils studied by Tolchard include teeth, pieces of jaws, hind limbs and body armour, all of which are can be described as parts of rauisuchians.

Rauisuchians are closely related to crocodiles as we know them today. They had a diversity of body shapes and sizes during the Triassic period. The specimens described in this research include some of the largest carnivorous members of this group, that were possibly up to 10 metres long, with huge skulls full of serrated, curved teeth.

The study, published online in the Journal of African Earth Sciences last week, shows that the rauisuchians were some of the latest-surviving members of their group, and that when they were alive, they were thriving close to the Antarctic Circle — the theoretical limit for their physiology.

“In the Triassic period, rauisuchians were widespread and their fossils are known from all continents except Antarctica,” adds Tolchard. “They went extinct about 200 million years ago, paving the way for dinosaurs to become the dominant large land animals.”

“Rick’s study demonstrates the value of re-examining old specimens, and now we finally know what was preying on all those herbivorous dinosaurs!” says Professor Jonah Choiniere, Rick’s advisor and Professor of Comparative Palaeobiology at the Wits Evolutionary Studies Institute.

Tolchard studied fossils from collections based at the the University of the Witwatersrand, the Iziko South African Museum and the National Museum in Bloemfontein. He was joined in the research by an international team, including researchers from the USA, Argentina and the UK.

First day of dinosaur extinction, new research


This July 2016 video says about itself:

Experience the Disaster that Wiped Out Dinosaurs

When the dinosaur-killing asteroid struck Earth, most of the impact energy was directed outwards and upwards into space. Only 1% of the force traveled down into the ground, but it was enough to ring the planet like a bell and wipeout species around the globe. Only those creatures able to seek shelter from the intense heat on the surface survived.

From the University of Texas at Austin in the USA:

Rocks at asteroid impact site record first day of dinosaur extinction

September 9, 2019

Summary: The research centers on the asteroid impact that wiped out non-avian dinosaurs, with the researchers getting the most detailed look yet of the aftermath that followed by examining the rocks and debris that filled the crater within the first 24 hours after impact.

When the asteroid that wiped out the dinosaurs slammed into the planet, the impact set wildfires, triggered tsunamis and blasted so much sulfur into the atmosphere that it blocked the sun, which caused the global cooling that ultimately doomed the dinos.

That’s the scenario scientists have hypothesized. Now, a new study led by The University of Texas at Austin has confirmed it by finding hard evidence in the hundreds of feet of rocks that filled the impact crater within the first 24 hours after impact.

The evidence includes bits of charcoal, jumbles of rock brought in by the tsunami‘s backflow and conspicuously absent sulfur. They are all part of a rock record that offers the most detailed look yet into the aftermath of the catastrophe that ended the Age of Dinosaurs, said Sean Gulick, a research professor at the University of Texas Institute for Geophysics (UTIG) at the Jackson School of Geosciences.

“It’s an expanded record of events that we were able to recover from within ground zero,” said Gulick, who led the study and co-led the 2016 International Ocean Discovery Program scientific drilling mission that retrieved the rocks from the impact site offshore of the Yucatan Peninsula. “It tells us about impact processes from an eyewitness location.”

The research was published in the Proceedings of the National Academy of Sciences on Sept. 9 and builds on earlier work co-led and led by the Jackson School that described how the crater formed and how life quickly recovered at the impact site. An international team of more than two dozen scientists contributed to this study.

Most of the material that filled the crater within hours of impact was produced at the impact site or was swept in by seawater pouring back into the crater from the surrounding Gulf of Mexico. Just one day deposited about 425 feet of material — a rate that’s among the highest ever encountered in the geologic record. This breakneck rate of accumulation means that the rocks record what was happening in the environment within and around the crater in the minutes and hours after impact and give clues about the longer-lasting effects of the impact that wiped out 75% of life on the planet.

Gulick described it as a short-lived inferno at the regional level, followed by a long period of global cooling.

“We fried them and then we froze them,” Gulick said. “Not all the dinosaurs died that day, but many dinosaurs did.”

Researchers estimate the asteroid hit with the equivalent power of 10 billion atomic bombs of the size used in World War II. The blast ignited trees and plants that were thousands of miles away and triggered a massive tsunami that reached as far inland as Illinois. Inside the crater, researchers found charcoal and a chemical biomarker associated with soil fungi within or just above layers of sand that shows signs of being deposited by resurging waters. This suggests that the charred landscape was pulled into the crater with the receding waters of the tsunami.

Jay Melosh, a Purdue University professor and expert on impact cratering, said that finding evidence for wildfire helps scientists know that their understanding of the asteroid impact is on the right track.

“It was a momentous day in the history of life, and this is a very clear documentation of what happened at ground zero,” said Melosh, who was not involved with this study.

However, one of the most important takeaways from the research is what was missing from the core samples. The area surrounding the impact crater is full of sulfur-rich rocks. But there was no sulfur in the core.

That finding supports a theory that the asteroid impact vaporized the sulfur-bearing minerals present at the impact site and released it into the atmosphere, where it wreaked havoc on the Earth’s climate, reflecting sunlight away from the planet and causing global cooling. Researchers estimate that at least 325 billion metric tons would have been released by the impact. To put that in perspective, that’s about four orders of magnitude greater than the sulfur that was spewed during the 1883 eruption of Krakatoa — which cooled the Earth’s climate by an average of 2.2 degrees Fahrenheit for five years.

Although the asteroid impact created mass destruction at the regional level, it was this global climate change that caused a mass extinction, killing off the dinosaurs along with most other life on the planet at the time.

“The real killer has got to be atmospheric”, Gulick said. “The only way you get a global mass extinction like this is an atmospheric effect.”

The research was funded by a number of international and national support organizations, including the National Science Foundation.