Fossil seashells, sharks, butterflies in museum


This video is called Miocene fossil clam Pseudolarix amabilis, October 4 2019.

On 13 January 2019, again to Naturalis museum.

Once again, to its Life Science hall.

Marian was working on many, mostly very small, fossils from the Tortonian age; part of the Miocene age; over 7 million years old. The fossils were from France.

There are thousands of seashell species represented in the fossils. As it was then warmer, there was more biodiversity.

Marian sorted the fossil shells according to genus. Later, specialists would do research on the species.

There were also other fossils found at that spot. Like shark teeth, acorn barnacles, sea urchins, and coral.

Next to Marian, work was in progress on classifying 500,000 unclassified butterflies of the Naturalis collection.

This October 20189 Dutch video is about the Naturalis collection.

New Zealand extinct native mammals


This 26 December 2019 video says about itself:

The Mystery of New Zealand’s Only Native Mammal.

New Zealand was thought to be a dominated by flightless birds, with only seals and bats making up its mammal population but 16 million years ago there lived a mammal. How did it get there? Where did it come from? What type of mammal was it?

Springtail fossil discovery in Dominican Republic


This is a 2010 video about springtails taken from the BBC’s Life in the Undergrowth documentary series.

From the New Jersey Institute of Technology in the USA:

16-million-year-old fossil shows springtails hitchhiking on winged termite

November 25, 2019

Summary: A newly reported, 16-million-year-old fossil is shedding light on how a group of tiny arthropods may have traversed the globe — by hitchhiking.

When trying to better the odds for survival, a major dilemma that many animals face is dispersal — being able to pick up and leave to occupy new lands, find fresh resources and mates, and avoid intraspecies competition in times of overpopulation.

For birds, butterflies and other winged creatures, covering long distances may be as easy as the breeze they travel on. But for soil-dwellers of the crawling variety, the hurdle remains: How do they reach new, far-off habitats?

For one group of tiny arthropods called springtails (Collembola), a recent fossil discovery now suggests their answer to this question has been to piggyback on the dispersal abilities of others, literally.

In findings published in BMC Evolutionary Biology, researchers at the New Jersey Institute of Technology (NJIT) and Museum national d’Histoire naturelle have detailed the discovery of an ancient interaction preserved in 16-million-year-old amber from the Dominican Republic: 25 springtails attached to, and nearby, a large winged termite and ant from the days of the early Miocene.

The fossil exhibits a number of springtails still attached to the wings and legs of their hosts, while others are preserved as if gradually floating away from their hosts within the amber. Researchers say the discovery highlights the existence of a new type of hitchhiking behavior among wingless soil-dwelling arthropods, and could be key to explaining how symphypleonan springtails successfully achieved dispersal worldwide.

“The existence of this hitchhiking behavior is especially exciting given the fact that modern springtails are rarely described as having any interspecfic association with surrounding animals,” said Ninon Robin, the paper’s first author whose postdoctoral research at NJIT’s Department of Biological Sciences was funded by the Fulbright Program of the French-American Commission. “This finding underscores how important fossils are for telling us about unsuspected ancient ecologies as well as still ongoing behaviors that were so far simply overlooked.”

Today, springtails are among the most common arthropods found in moist habitats around the world. Most springtails possess a specialized appendage under their abdomen they use to “spring” away in flea-like fashion to avoid predation. However, this organ is not sufficient for traversing long distances, especially since most springtails are unable to survive long in dry areas.

The hitchhikers the researchers identified belong to a lineage of springtails found today on every continent, known as Symphypleona, which they say may have been “pre-adapted” to grasping on to other arthropods through prehensile antennae.

Because springtails would have encountered such winged termites and ants frequently due to their high abundance during the time of the preservation, these social insects may have been their preferred hosts for transportation.

“Symphypleonan springtails are unusual compared to other Collembola in that they have specialized antennae that are used in mating courtship,” said Phillip Barden, assistant professor of biology at NJIT and the study’s principal investigator. “This antennal anatomy may have provided an evolutionary pathway for grasping onto other arthropods. In this particular fossil, we see these specialized antennae wrapping around the wings and legs of both an ant and termite. Some winged ants and termites are known to travel significant distances, which would greatly aid in dispersal.”

Barden says that the discovery joins other reports from the Caribbean and Europe of fossil springtails attached to a beetle, a mayfly and a harvestman in amber, which together suggest that this behavior may still exist today.

Barden notes that evidence of springtail hitchhiking may not have been captured in such high numbers until now due to the rarity of such a fossilized interaction, as well as the nature of modern sampling methods for insects, which typically involves submersion in ethanol for preservation.

“Because it appears that springtails reflexively detach from their hosts when in danger, evidenced by the detached individuals in the amber, ethanol would effectively erase the link between hitchhiker and host,” said Barden. “Amber derives from fossilized sticky tree resin and is viscous enough that it would retain the interaction. … Meaning, sometimes you have to turn to 16-million-year-old amber fossils to find out what might be happening in your backyard.”

Prehistoric rhino discovery in Yukon, Canada


This 18 June 2019 Canadian TV says about itself:

A pair of fossilized teeth found in Yukon in the 1970s belong to a species of ancient hyena that roamed the grassy tundra during the early years of the last ice age, paleontologists have found. The fossils sat in the Canadian Museum of Nature in Ottawa until Jack Tseng, an expert on ancient predatory mammals, was brought in to confirm that they are the first hyena fossils found in the Arctic.

From the University of Colorado at Boulder in the USA:

Ancient rhinos roamed the Yukon

October 31, 2019

Summary: Paleontologists have used modern tools to identify the origins of a few fragments of teeth found more than four decades ago by a schoolteacher in the Yukon.

In 1973, a teacher named Joan Hodgins took her students on a hike near Whitehorse in Canada’s Yukon Territory. In the process, she made history for this chilly region.

While exploring the tailings left behind by a now-defunct copper mine, Hodgins and her students stumbled across a few fragments of fossils — bits and pieces of what seemed to be teeth alongside pieces of bone.

The ancient fragments of teeth were so small and in such bad shape that “most paleontologists may not have picked them up”, said Jaelyn Eberle, a curator of fossil vertebrates at the University of Colorado Boulder’s Museum of Natural History.

But Hodgins did. Now, more than 40 years after the teacher’s fateful hike, an international team led by Eberle used modern technology to identify the origins of those enigmatic fossils.

In a study published today, Eberle and her colleagues report that the fossil tooth fragments likely came from the jaw of a long-extinct cousin of today’s rhinoceroses. This hefty animal may have tromped through the forests of Northwest Canada roughly 8 to 9 million years ago.

And it’s a first: Before the rhino discovery, paleontologists had not found a single fossil vertebrate dating back to this time period in the Yukon.

“In the Yukon, we have truckloads of fossils from ice age mammals like woolly mammoths, ancient horses and ferocious lions”, said Grant Zazula, a coauthor of the new study and Yukon Government paleontologist. “But this is the first time we have any evidence for ancient mammals, like rhinos, that pre-date the ice age.”

It’s a gap in the fossil record that scientists have been keen to fill.

To understand why, imagine the Earth during the Tertiary Period, a span of time that began after the dinosaurs went extinct and ended about 2.6 million years ago. In that age, a land bridge called Beringia connected what are today Russia and Alaska.

Paleontologists believe that animals of all sorts, including mammoths and rhinos, poured over that bridge.

There’s just one problem: The geology and environment of the Yukon, which sat at the center of that mass migration route, isn’t conducive to preserving fossils from land animals.

“We know that a land bridge must have been in operation throughout much of the last 66 million years,” Eberle said. “The catch is finding fossils in the right place at the right time.”

In this case, the people at the right place and at the right time was a Yukon schoolteacher and her students.

When Eberle first saw Hodgins’ fossil teeth, now housed in the Yukon Government fossil collections in Whitehorse, she didn’t think she could do much with them.

Then she and her colleagues landed on an idea: Eberle put one of the small pieces under a tool called a scanning electron microscope that can reveal the structure of tooth enamel in incredible detail.

She explained that mammal teeth aren’t all built alike. The crystals that make up enamel can grow following different patterns in different types of animals, a bit like a dental fingerprint. The Yukon tooth enamel, the team found, carried the tell-tale signs of coming from a rhinoceros relative.

“I hadn’t thought that enamel could be so beautiful,” Eberle said.

The method isn’t detailed enough to determine the precise species of rhino. But, if this animal was anything like its contemporaries to the south, Eberle said, it may have been about the same size or smaller than today’s black rhinos and browsed on leaves for sustenance. It also probably didn’t have a horn on its snout.

The group also looked at a collection of fossils found alongside the rhino’s tooth chips. They belonged to two species of turtle, an ancient deer relative and a pike fish. The discovery of the turtles, in particular, indicated that the Yukon had a warmer and wetter climate than it does today.

Hodgins, now-retired, is excited to see what became of the fossils she and her students discovered more than 40 years ago: It’s “just so wonderful to learn what has developed with them from long ago,” she said.

Eberle added that the Yukon’s newly-discovered rhino residents are a testament to the importance of museums.

“The fact that these specimens were discovered in the Yukon museum collection makes me really want to spend more time in other collections, including at CU Boulder, looking for these kinds of discoveries that are there but haven’t had the right eyes on them yet,” Eberle said.

Monkey, ape brain evolution, new research


This 21 August 2019 video says about itself:

See the digital reconstruction of an ancient monkey’s skull | Science News

The digital reconstruction of an extinct South American monkey’s fossilized skull, seen twirling in this video, offered a rare chance to study brain development in a 20-million-year-old animal. From high-resolution X-ray CT scans of the skull, researchers built a 3-D model of the brain of Chilecebus carrascoensis, seen in the second part of the video.

Read more here.

From the American Museum of Natural History in the USA:

20-million-year-old skull suggests complex brain evolution in monkeys, apes

New study reveals that brain enlargement and modern features evolved repeatedly in anthropoids

August 21, 2019

It has long been thought that the brain size of anthropoid primates — a diverse group of modern and extinct monkeys, humans, and their nearest kin — progressively increased over time. New research on one of the oldest and most complete fossil primate skulls from South America shows instead that the pattern of brain evolution in this group was far more checkered. The study, published today in the journal Science Advances and led by researchers from the American Museum of Natural History, the Chinese Academy of Sciences, and the University of California Santa Barbara, suggests that the brain enlarged repeatedly and independently over the course of anthropoid history, and was more complex in some early members of the group than previously recognized.

“Human beings have exceptionally enlarged brains, but we know very little about how far back this key trait started to develop,” said lead author Xijun Ni, a research associate at the Museum and a researcher at the Chinese Academy of Sciences. “This is in part because of the scarcity of well-preserved fossil skulls of much more ancient relatives.”

As part of a long-term collaboration with John Flynn, the Museum’s Frick Curator of Fossil Mammals, Ni spearheaded a detailed study of an exceptional 20-million-year-old anthropoid fossil discovered high in the Andes mountains of Chile, the skull and only known specimen of Chilecebus carrascoensis.

“Through more than three decades of partnership and close collaboration with the National Museum of Chile, we have recovered many remarkable new fossils from unexpected places in the rugged volcanic terrain of the Andes,” Flynn said. “Chilecebus is one of those rare and truly spectacular fossils, revealing new insights and surprising conclusions every time new analytical methods are applied to studying it.”

Previous research by Flynn, Ni, and their colleagues on Chilecebus provided a rough idea of the animal’s encephalization, or the brain size relative to body size. A high encephalization quotient (EQ) signifies a large brain for an animal of a given body size. Most primates have high EQs relative to other mammals, although some primates — especially humans and their closest relatives — have even higher EQs than others. The latest study takes this understanding one step further, illustrating the patterns across the broader anthropoid family tree. The resulting “PEQ” — or phylogenetic encephalization quotient, to correct for the effects of close evolutionary relationships — for Chilecebus is relatively small, at 0.79. Most living monkeys, by comparison, have PEQs ranging from 0.86 to 3.39, with humans coming in at an extraordinary 13.46 and having expanded brain sizes dramatically even compared to nearest relatives. With this new framework, the researchers confirmed that cerebral enlargement occurred repeatedly and independently in anthropoid evolution, in both New and Old World lineages, with occasional decreases in size.

High-resolution x-ray computed tomography (CT) scanning and 3D digital reconstruction of the inside of Chilecebus’ skull gave the research team new insights into the anatomy of its brain. In modern primates, the size of the visual and olfactory centers in the brain are negatively correlated, reflecting a potential evolutionary “trade-off”, meaning that visually acute primates typically have weaker senses of smell. Surprisingly, the researchers discovered that a small olfactory bulb in Chilecebus was not counterbalanced by an amplified visual system. This finding indicates that in primate evolution the visual and olfactory systems were far less tightly coupled than was widely assumed.

Other findings: The size of the opening for the optic nerve suggests that Chilecebus was diurnal. Also, the infolding (sulcus) pattern of the brain of Chilecebus, although far simpler than in most modern anthropoids, possesses at least seven pairs of sulcal grooves and is surprisingly complex for such an ancient primate.

“During his epic voyage on the Beagle, Charles Darwin explored the mouth of the canyon where Chilecebus was discovered 160 years later. Shut out of the higher cordillera by winter snow, Darwin was inspired by ‘scenes of the highest interest’ his vista presented. This exquisite fossil, found just a few kilometers east of where Darwin stood, would have thrilled him”, said co-author André Wyss from the University of California Santa Barbara.

Giant extinct Purussaurus caimans, video


This 18 Augustus 2019 video says about itself:

A Giant Extinct CaimanPurussaurus

In the depths of the prehistoric Amazon lurks one of the largest predators the Earth has ever seen.

Purussaurus lived in the Miocene epoch.

World’s biggest parrot discovered in New Zealand


Relative size of Heracles inexpectatus parrot

From Flinders University in Australia:

NZ big bird a whopping ‘squawkzilla’

Meet ‘Hercules’ — the giant parrot that dwarfs its modern cousins

Australasian palaeontologists have discovered the world’s largest parrot, standing up to 1m tall with a massive beak able to crack most food sources.

The new bird has been named Heracles inexpectatus to reflect its Herculean myth-like size and strength — and the unexpected nature of the discovery.

“New Zealand is well known for its giant birds,” says Flinders University Associate Professor Trevor Worthy. “Not only moa dominated avifaunas, but giant geese and adzebills shared the forest floor, while a giant eagle ruled the skies.

“But until now, no-one has ever found an extinct giant parrot — anywhere.”

The NZ fossil is approximately the size of the giant ‘dodo‘ pigeon of the Mascarenes and twice the size of the critically endangered flightless New Zealand kakapo, previously the largest known parrot.

Like the kakapo, it was a member of an ancient New Zealand group of parrots that appear to be more primitive than parrots that thrive today on Australia and other continents.

Experts from Flinders University, UNSW Sydney and Canterbury Museum in New Zealand estimate Heracles to be 1 m tall, weighing about 7 kg.

The new parrot was found in fossils up to 19 million years old from near St Bathans in Central Otago, New Zealand, in an area well known for a rich assemblage of fossil birds from the Miocene period.

“We have been excavating these fossil deposits for 20 years, and each year reveals new birds and other animals,” says Associate Professor Worthy, from the Flinders University Palaeontology Lab.

“While Heracles is one of the most spectacular birds we have found, no doubt there are many more unexpected species yet to be discovered in this most interesting deposit.”

“Heracles, as the largest parrot ever, no doubt with a massive parrot beak that could crack wide open anything it fancied, may well have dined on more than conventional parrot foods, perhaps even other parrots,” says Professor Mike Archer, from the UNSW Sydney Palaeontology, Geobiology and Earth Archives (PANGEA) Research Centre.

“Its rarity in the deposit is something we might expect if it was feeding higher up in the food chain,” he says, adding parrots “in general are very resourceful birds in terms of culinary interests.”

“New Zealand keas, for example, have even developed a taste for sheep since these were introduced by European settlers in 1773.”

Birds have repeatedly evolved giant species on islands. As well as the dodo, there has been another giant pigeon found on Fiji, a giant stork on Flores, giant ducks in Hawaii, giant megapodes in New Caledonia and Fiji, giant owls and other raptors in the Caribbean.

Heracles lived in a diverse subtropical forest where many species of laurels and palms grew with podocarp trees.

“Undoubtedly, these provided a rich harvest of fruit important in the diet of Heracles and the parrots and pigeons it lived with. But on the forest floor Heracles competed with adzebills and the forerunners of moa,” says Professor Suzanne Hand, also from UNSW Sydney.

“The St Bathans fauna provides the only insight into the terrestrial birds and other animals that lived in New Zealand since dinosaurs roamed the land more than 66 million years ago,” says Paul Scofield, Senior Curator at Canterbury Museum, Christchurch.

Canterbury Museum research curator Vanesa De Pietri says the fossil deposit reveals a highly diverse fauna typical of subtropical climates with crocodilians, turtles, many bats and other mammals, and over 40 bird species.

“This was a very different place with a fauna very unlike that which survived into recent times,” she says.

This research was funded by the Australian Research Council and supported by the Marsden Fund Council from Government funding, managed by Royal Society Te Apārangi.

This 7 August 2019 video, in Spanish, is about the recent discovery of Heracles inexpectatus, the biggest parrot ever.