Generosity among crows, new research


This 2014 video is called Crows: Documentary on The Intelligent World of Crows (Full Documentary).

From the University of Vienna in Austria:

Social life as a driving factor of birds’ generosity

October 22, 2020

Taking a look at generosity within the crow family reveals parallels with human evolution. Working together to raise offspring and increased tolerance towards group members contribute to the emergence of generous behavior among ravens, crows, magpies and company. Biologists found that the social life of corvids is a crucial factor for whether the birds act generously or not.

Ravens, crows, magpies and their relatives are known for their exceptional intelligence, which allows them to solve complex problems, use tools or outsmart their conspecifics. One capability, however, that we humans value highly, seems to be missing from their behavioral repertoire: generosity. Only very few species within the crow family have so far been found to act generously in experimental paradigms, while the highly intelligent ravens, for example, have demonstrated their egoistic tendencies in multiple studies. Lisa Horn of the of the Department of Behavioral and Cognitive Biology of the University of Vienna could now demonstrate, together with Jorg Massen of Utrecht University and an international team of researchers, that the social life of corvids is a crucial factor for whether the birds benefit their group members or not.

“Spontaneous generosity, without immediately expecting something in return, is a cornerstone of human society whose evolutionary foundations are still not fully understood. One hypothesis postulates that raising offspring cooperatively may have promoted the emergence of a tendency to willingly benefit group members in early human groups. Another hypothesis speculates that only increased tolerance towards group members and a reduced level of aggression made such generous behavior possible. While researchers found evidence for both hypotheses when investigating other non-human primates, results from other animal taxa have so far been missing,” explains lead author Lisa Horn.

That is why Horn and her colleagues tested generous behavior in multiple species from the crow family. Some of the tested species raise their offspring cooperatively, while others do not. Additionally, some of the species nest in close proximity with their conspecifics, thereby demonstrating their high levels of tolerance, while other species jealously guard their territories against other members of their own species. In the experiment, the birds operated a seesaw mechanism by landing on a perch, which brought food into reach of their group members. If the birds wanted to grab the food themselves, they would have had to leave the perch and the seesaw would tilt back, thereby moving the food out of reach again. Since the birds thus could not get anything for themselves the authors argued that only truly generous birds would continue to deliver food to their group members throughout multiple experimental sessions.

Raising offspring cooperatively and high tolerance as driving factors for generosity

It became evident that this behavior was displayed most strongly by these corvid species that work together to raise their offspring cooperatively. Among male birds, the researchers also found evidence for the hypothesis that high tolerance towards conspecifics is important for the emergence of generous behavior. Males from species that commonly nest in very close proximity to each other were particularly generous. These results seem to support the hypotheses that raising offspring cooperatively and increased levels of tolerance may have promoted the emergence of generous tendencies not only in humans, but also in other animals. “What fascinates me the most is that in animals that are so different from us evolutionary mechanisms very similar to the ones in our human ancestors seem to have promoted the emergence of generous behavior,” concludes Horn. More studies with different bird species, like the similarly intelligent parrots, or other animal taxa are, however, needed to further investigate these connections.

Snakes during the night, new research


This 6 September 2020 video says about itself:

12 Most Beautiful Snakes in the World

With over 3,000 snake species known to humans, it’s no surprise they come in all sorts of shapes, colors, and patterns. If you too think we spend a little too much time fearing these slithering creatures instead of admiring their natural beauty, then stick around, because today we’re bringing you The 12 Most Beautiful Snakes in the World. Seriously, #2 is so gorgeous, it’ll leave you wondering how you could ever fear one of these majestic creatures again. Okay, probably not––but you get the point.

Anyhow, strap yourselves in and let’s take a look at some of these magnificent snakes.

From the University of Houston in Texas in the USA:

How do snakes ‘see’ in the dark? Researchers have an answer

New insights explain how snakes convert infrared radiation into electrical signals

October 21, 2020

Certain species of snake — think pit vipers, boa constrictors and pythons, among others — are able to find and capture prey with uncanny accuracy, even in total darkness. Now scientists have discovered how these creatures are able to convert the heat from organisms that are warmer than their ambient surroundings into electrical signals, allowing them to “see” in the dark.

The work, published in the journal Matter, provides a new explanation for how that process works, building upon the researchers’ previous work to induce pyroelectric qualities in soft materials, allowing them to generate an electric charge in response to mechanical stress.

Researchers have known electrical activity was likely to be involved in allowing the snakes to detect prey with such exceptional skill, said Pradeep Sharma, M.D. Anderson Chair Professor of mechanical engineering at the University of Houston and corresponding author for the paper. But naturally occurring pyroelectric materials are rare, and they are usually hard and brittle. The cells in the pit organ — a hollow chamber enclosed by a thin membrane, known to play a key role in allowing snakes to detect even small temperature variations — aren’t pyroelectric materials, said Sharma, who also is chairman of the Department of Mechanical Engineering at UH.

But when he and colleagues last year reported producing pyroelectric effects in a soft, rubbery material, something clicked.

“We realized that there is a mystery going on in the snake world,” he said. “Some snakes can see in total darkness. It would be easily explained if the snakes had a pyroelectric material in their bodies, but they do not. We realized that the principle behind the soft material we had modeled probably explains it.”

Not all snakes have the ability to produce a thermal image in the dark. But those with a pit organ are able to use it as an antenna of sorts to detect the infrared radiation emanating from organisms or objects that are warmer than the surrounding atmosphere. They then process the infrared radiation to form a thermal image, although the mechanism by which that happened hasn’t been clear.

Sharma and his colleagues determined that the cells inside the pit organ membrane have the ability to function as a pyroelectric material, drawing upon the electrical voltage that is found in most cells. Through modeling, they used their proposed mechanism to explain previous experimental findings related to the process.

“The fact that these cells can act like a pyroelectric material, that’s the missing connection to explain their vision,” Sharma said.

This work was part of the Ph.D. dissertation of Faezeh Darbaniyan, first author on the paper. Additional researchers on the project include Kosar Mozaffari, a student at UH, and Professor Liping Liu of Rutgers University.

The work explains the mechanism by which the cells are able to take on pyroelectric properties, although questions remain, including how the proposed mechanism is related to the role played by the increased number of ion channels found in TRPA1 proteins. TRPA1 proteins are more abundant in the cells of pit-organ snakes than in non-pit snakes.

“Our mechanism is very robust and simple. It explains quite a lot,” Sharma said. “At the same time, it is undeniable these channels play a role as well, and we are not yet sure of the connection.”

How diabolical ironclad beetles survive cars


This 21 October 2020 video is called Diabolical Ironclad Beetle: Unlocking the secrets of its super-tough design.

From Purdue University in the USA:

This beetle can survive getting run over by a car; Engineers are figuring out how

October 21, 2020

Getting run over by a car is not a near-death experience for the diabolical ironclad beetle.

How the beetle survives could inspire the development of new materials with the same herculean toughness, engineers show in a paper published Wednesday (Oct. 21) in Nature.

These materials would be stiff but ductile like a paper clip, making machinery such as aircraft gas turbines safer and longer-lasting, the researchers said.

The study, led by engineers at the University of California, Irvine (UCI) and Purdue University, found that the diabolical ironclad beetle’s super-toughness lies in its two armorlike “elytron” that meet at a line, called a suture, running the length of the abdomen.

In flying beetles, the elytra protect wings and facilitate flight. But the diabolical ironclad beetle doesn’t have wings. Instead, the elytra and connective suture help to distribute an applied force more evenly throughout its body.

“The suture kind of acts like a jigsaw puzzle. It connects various exoskeletal blades — puzzle pieces — in the abdomen under the elytra,” said Pablo Zavattieri, Purdue’s Jerry M. and Lynda T. Engelhardt Professor of Civil Engineering.

This jigsaw puzzle comes to the rescue in several different ways depending on the amount of force applied, Zavattieri said.

To uncover these strategies, a team led by UCI professor David Kisailus first tested the limits of the beetle’s exoskeleton and characterized the various structural components involved by looking at CT scans.

Using compressive steel plates, UCI researchers found that the diabolical ironclad beetle can take on an applied force of about 150 newtons — a load of at least 39,000 times its body weight — before the exoskeleton begins to fracture.

That’s more impressive than sounds: A car tire would apply a force of about 100 newtons if running over the beetle on a dirt surface, the researchers estimate. Other terrestrial beetles the team tested couldn’t handle even half the force that a diabolical ironclad can withstand.

Zavattieri’s lab followed up these experiments with extensive computer simulations and 3D-printed models that isolated certain structures to better understand their role in saving the beetle’s life.

All of these studies combined revealed that when under a compressive load such as a car tire, the diabolical ironclad beetle’s jigsaw-like suture offers two lines of defense.

First, the interconnecting blades lock to prevent themselves from pulling out of the suture like puzzle pieces. Second, the suture and blades delaminate, which leads to a more graceful deformation that mitigates catastrophic failure of the exoskeleton. Each strategy dissipates energy to circumvent a fatal impact at the neck, where the beetle’s exoskeleton is most likely to fracture.

Even if a maximum force is applied to the beetle’s exoskeleton, delamination allows the interconnecting blades to pull out from the suture more gently. If the blades were to interlock too much or too little, the sudden release of energy would cause the beetle’s neck to snap.

It’s not yet known if the diabolical ironclad beetle has a way to heal itself after surviving a car “accident.” But knowing about these strategies could already solve fatigue problems in various kinds of machinery.

“An active engineering challenge is joining together different materials without limiting their ability to support loads. The diabolical ironclad beetle has strategies to circumvent these limitations,” said David Restrepo, an assistant professor at the University of Texas at San Antonio who worked on this project as a postdoctoral researcher in Zavattieri’s group.

In the gas turbines of aircraft, for example, metals and composite materials are joined together with a mechanical fastener. This fastener adds weight and introduces stress that could lead to fractures and corrosion.

“These fasteners ultimately decrease the performance of the system and need to be replaced every so often. But the interfacial sutures of the diabolical ironclad beetle provide a robust and more predictable failure that could help solve these problems,” said Maryam Hosseini, who worked on this project as a Ph.D. student and postdoctoral researcher in Zavattieri’s group. Hosseini is now an engineering manager at Procter & Gamble Corp.

UCI researchers built a carbon fiber composite fastener mimicking a diabolical ironclad beetle’s suture. Purdue researchers found through loading tests that this fastener is just as strong as a standard aerospace fastener, but significantly tougher.

“This work shows that we may be able to shift from using strong, brittle materials to ones that can be both strong and tough by dissipating energy as they break. That’s what nature has enabled the diabolical ironclad beetle to do,” Zavattieri said.

This research is financially supported by the Air Force Office of Scientific Research and the Army Research Office through the Multi-University Research Initiative (award number FA9550-15-1-0009). The study used resources at the Advanced Light Source, a U.S. Department of Energy Office of Science User Facility.

How barn owls fly, new research


This 21 October 2020 video is called Lily the Barn Owl Reveals How Birds Fly in Gusty Winds.

From the University of Bristol in England:

Lily the barn owl reveals how birds fly in gusty winds

Newly discovered avian suspension system has implications for bio-inspired aircraft

October 21, 2020

Scientists from the University of Bristol and the Royal Veterinary College have discovered how birds are able to fly in gusty conditions — findings that could inform the development of bio-inspired small-scale aircraft.

“Birds routinely fly in high winds close to buildings and terrain — often in gusts as fast as their flight speed. So the ability to cope with strong and sudden changes in wind is essential for their survival and to be able to do things like land safely and capture prey,” said Dr Shane Windsor from the Department of Aerospace Engineering at the University of Bristol.

“We know birds cope amazingly well in conditions which challenge engineered air vehicles of a similar size but, until now, we didn’t understand the mechanics behind it,” said Dr Windsor.

The study, published in Proceedings of the Royal Society B, reveals how bird wings act as a suspension system to cope with changing wind conditions. The team used an innovative combination of high-speed, video-based 3D surface reconstruction, computed tomography (CT) scans, and computational fluid dynamics (CFD) to understand how birds ‘reject’ gusts through wing morphing, i.e. by changing the shape and posture of their wings.

In the experiment, conducted in the Structure and Motion Laboratory at the Royal Veterinary College, the team filmed Lily, a barn owl, gliding through a range of fan-generated vertical gusts, the strongest of which was as fast as her flight speed. Lily is a trained falconry bird who is a veteran of many nature documentaries, so wasn’t fazed in the least by all the lights and cameras.

“We began with very gentle gusts in case Lily had any difficulties, but soon found that — even at the highest gust speeds we could make — Lily was unperturbed; she flew straight through to get the food reward being held by her trainer, Lloyd Buck,” commented Professor Richard Bomphrey of the Royal Veterinary College.

“Lily flew through the bumpy gusts and consistently kept her head and torso amazingly stable over the trajectory, as if she was flying with a suspension system. When we analysed it, what surprised us was that the suspension-system effect wasn’t just due to aerodynamics, but benefited from the mass in her wings. For reference, each of our upper limbs is about 5% of our body weight; for a bird it’s about double, and they use that mass to effectively absorb the gust,” said lead-author Dr Jorn Cheney from the Royal Veterinary College.

“Perhaps most exciting is the discovery that the very fastest part of the suspension effect is built into the mechanics of the wings, so birds don’t actively need to do anything for it to work. The mechanics are very elegant. When you strike a ball at the sweetspot of a bat or racquet, your hand is not jarred because the force there cancels out. Anyone who plays a bat-and-ball sport knows how effortless this feels. A wing has a sweetspot, just like a bat. Our analysis suggests that the force of the gust acts near this sweetspot and this markedly reduces the disturbance to the body during the first fraction of a second. The process is automatic and buys just enough time for other clever stabilising processes to kick in,” added Dr Jonathan Stevenson from the University of Bristol.

Unique Australian spider silk


This 2018 video about food is called Spider Web Cake with Chocolate Ganache.

From the University of Melbourne:

Tapping secrets of Aussie spider’s unique silk

Silk so robust potential new genetic material touted

October 19, 2020

Summary: The basket-web spider, which is found only in Australia, has revealed it not only weaves a unique lobster pot web but that its silk has elasticity and a gluing substance, that creates a high degree of robustness.

An international collaboration has provided the first insights into a new type of silk produced by the very unusual Australian basket-web spider, which uses it to build a lobster pot web that protects its eggs and trap prey.

The basket-web spider weaves a silk that is uniquely rigid and so robust that the basket-web doesn’t need help from surrounding vegetation to maintain its structure.

“As far as we know, no other spider builds a web like this,” said Professor Mark Elgar from the School of BioSciences at the University of Melbourne.

“This silk retains its rigidity, allowing a rather exquisite silken basket or deadly ant trap.”

The collaboration between the University of Melbourne and the University of Bayreuth with the Australian Nuclear Science and Technology Organisation is likely to draw a lot of interest.

Entomologist William J Rainbow discovered the basket-spider in 1900 but made no mention of the nature of its silk, perhaps because he had only seen drawings of the web and imagined it to be more sack-like.

The recent study, just published in Scientific Reports, as Dimensional stability of a remarkable spider foraging web achieved by synergistic arrangement of silk fiber,” has found that the silk used to construct the basket web is similar to the silk that many species of spiders use to wrap around their eggs, to protect them from the elements and enemies.

“Our discovery may provide insights into the evolution of foraging webs,” said Professor Elgar. “It is widely thought that silk foraging webs, including the magnificent orb-webs, evolved from the habit of producing silk to protect egg cases. Perhaps the basket-web is an extension of the protective egg case and represents a rare contemporary example of an evolutionary ancestral process.”

The basket-web spider is found only in Australia. Its basket is approximately 11mm in diameter and 14 mm deep and has crosslinked threads of varying diameters. The nature of the silk was revealed by the Australian Synchrotron, a national facility of the Australian Nuclear Science and Technology Organisation in south east Melbourne.

Professor Thomas Scheibel from the University of Bayreuth said the rigidity of the silk appears to come from the synergistic arrangement of microfibres and submicron fibres.

“Nature has created a complex structure that, at first glance, resembles industrially produced composites,” said Professor Scheibel who headed the research from Germany.

“Further investigations have, however, shown that they are chemically different components and their respective properties together result in the thread’s extreme elasticity and toughness, thus creating a high degree of robustness. With today’s composite materials, on the other hand, it is mainly the fibres embedded in the matrix that establish the particular properties required, such as high stability.”

While more work needs to be done to understand the molecular details of the silk, Professor Scheibel said there is potential interest in a new genetic material that can be produced in a scalable manner.

“The interesting feature is the high lateral stiffness as well as the gluing substances, which could be useful in several types of applications but it will be some time before this becomes a possibility.”

Professor Elgar said “More generally the basket web, and the properties of its silk, highlight the importance of continuing to investigate obscure, unfamiliar species.

“There is increasing recognition that solutions to many of the complex challenges and puzzles we face today can be found from biological systems.

“This so-called ‘Bioinspiration’ draws on some 3.8 billion years of natural selection honing biological forms, processes and systems. The potential insights from that diversity of life, about which we still know rather little, is staggering.”

Antarctic Peninsula wildlife conservation needed


This 14 October 2020 video says about itself:

“The Antarctic Peninsula” showcases the breathtaking beauty and biodiversity hidden at the end of the Earth. Following the binational expedition conducted by the governments of Argentina and Chile in collaboration with National Geographic Pristine Seas, “The Antarctic Peninsula” documents the work and findings of the team of scientists and conservationists who explored the incredible ecosystem above and below the waters of Antarctica. With stunning underwater footage captured by diving in sub-zero temperatures, learn about one of the most unknown and fragile marine ecosystems which is home to incredible sea creatures that are facing the challenges of climate change and fishing pressure.

Introduced by National Geographic Pristine Seas Director for Latin America Alex Muñoz, dive into this unique ecosystem and learn about the international efforts to protect one of the most spectacular wild places on Earth.

From the University of Sydney in Australia:

Marine protected area urged for Antarctica Peninsula

October 18, 2020

Summary: Species on the Antarctic Peninsula are threatened by climate change and human activities including commercial fishing, tourism, and research infrastructure.

The Western Antarctic Peninsula is one of the fastest-warming places on earth. It is also home to threatened humpback and minke whales, chinstrap, Adélie and gentoo penguin colonies, leopard seals, killer whales, seabirds like skuas and giant petrels, and krill — the bedrock of the Antarctic food chain.

With sea ice covering ever-smaller areas and melting more rapidly due to climate change, many species’ habitats have decreased. The ecosystem’s delicate balance is consequently tilted, leaving species in danger of extinction.

Cumulative threats from a range of human activities including commercial fishing, research activities and tourism combined with climate change is exacerbating this imbalance, and a tipping point is fast approaching.

Dr Carolyn Hogg, from the University of Sydney School of Life and Environmental Sciences, was part of the largest ever all-female expedition to the Antarctic Peninsula, with the women in STEMM initiative, Homeward Bound, in late 2019. There, she witnessed the beauty and fragility of the area, and the negative impacts of climate change and human activity on native species, first-hand. As part of the Homeward Bound program she learnt about the science, conservation and governance of Antarctica.

In a new commentary piece published in Nature, Dr Hogg and her colleagues from the expedition outline these threats, and importantly, offer ways to counter them. More than 280 women in STEMM who have participated in the Homeward Bound initiative are co-signatories to the piece.

A global initiative, Homeward Bound ‘aims to elevate the voices of women in science, technology, engineering mathematics and medicine in leading for positive outcomes for our planet’.

Women are noticeably absent in Antarctica’s human history, which is steeped in tales of male heroism. Female scientists are still a minority in the region’s research stations.

“Now, more than ever, a broad range of perspectives is essential in global decision-making, if we are to mitigate the many threats our planet faces,” said Dr Hogg.

“Solutions include the ratification of a Marine Protected Area around the Peninsula, set to be discussed on 19 October, at a meeting of a group of governments that collectively manage the Southern Ocean’s resources,” said Dr Hogg. “The region is impacted by a number of threats, each potentially problematic in their own right, but cumulated together they will be catastrophic.”

Decreasing krill affects whole ecosystem

The Peninsula’s waters are home to 70 percent of Antarctic krill. In addition to climate change, these krill populations are threatened by commercial fishing. Last year marked the third-largest krill catch on record. Nearly 400,000 tonnes of this animal were harvested, to be used for omega-3 dietary supplements and fishmeal.

“Even relatively small krill catches can be harmful if they occur in a particular region, at a sensitive time for the species that live there,” said Dr Cassandra Brooks, a co-author on the comment from the University of Colorado, Boulder. “For example, fishing when penguins are breeding lowers their food intake, and affects their subsequent breeding success. A Marine Protected Area will conserve and protect this unique ecosystem and its wildlife, and we need to implement it now.”

Climate change is fundamentally altering the Western Antarctic Peninsula:

  • temperatures reached a record 20.75°C in February 2020
  • the average daily temperature that month was two degrees higher than the mean over the past 70 years
  • almost 90 percent of the region’s glaciers are receding rapidly
  • in spring 2016, sea-ice levels reached their lowest since records began
  • if carbon emissions keep climbing, within 50 years the area of sea-ice will almost halve, and the volume of ice-shelves will decrease by one quarter

As sea ice recedes, populations of larval and juvenile krill, which use the ice for shelter and to feed off the algae it attracts, decline.

A warmer climate and less sea-ice cover will also give opportunities to invasive species, which can enter the territory via international ships, including those carrying tourists.

The lasting tourism and research footprint

Tourism’s footprint is growing. The Peninsula is the most-visited region in Antarctica, owing to its proximity to South America, dramatic beauty and rich marine ecosystem.

Tourist numbers have more than doubled in the past decade, with 74,000 visiting last year compared to 33,000 in 2009.

“Ships can pollute the ocean with micro-plastics, oils and ship noise,” said Dr Justine Shaw, another co-author from the University of Queensland.

While the International Association of Antarctica Tour Operators (IAATO), a self-regulating association that advocates for safe and environmentally responsible travel, provides guidelines for cruise ships and tourists, “an increasing number of vessels that are not IAATO members and that carry up to about 500 passengers have begun visiting the region, and this is concerning as it adds greater pressure,” Dr Shaw said.

While the collection of data and knowledge is important, research activities can also potentially damage the Antarctic Peninsula’s sensitive environment, the team stated.

The Peninsula hosts science facilities belonging to 18 nations — the highest concentration on the continent. New stations and expansions are ever-present.

While these scientific endeavours can increase our understanding of native species’, there can be negative impacts on the region if not properly managed. Dr Shaw explained: “Buildings and infrastructure displace wildlife and vegetation.”

Three ways to protect the Peninsula

1. A Marine Protected Area (MPA) designation for the watersThe authors endorse a proposed MPA for the western Antarctic Peninsula. Led by Chile and Argentina, this is due to be discussed during a two-week meeting commencing 19 October by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), a group of governments that collectively manage the Southern Ocean’s resources.

The MPA would reduce commercial fishing in ecologically sensitive areas, helping preserve the food chain and ensuring greater sustainability for the future in surrounding areas.

A comparable MPA for the Ross Sea, in southern Antarctica, was agreed to in October 2016 to global celebration.

2. Protect land areas

Only 1.5 percent of Antarctica’s ice-free terrain enjoys formal protected status. Much unprotected land is adjacent to research and tourist areas and is therefore vulnerable to human-generated risks like pollution and invasive species.

The authors call for a greater extent and variety of landscapes to be protected.

“Globally, parties to the Convention on Biological Diversity have agreed that 17 percent of land should be protected to ensure conservation of biodiversity. This is a good starting point for Antarctica,” Dr Hogg said.

3. Integrate conservation efforts

For conservation efforts to be effective, they have to be collaborative. Dr Shaw furnished examples: “The Council of Managers of National Antarctic Programs (COMNAP) must work to limit the expansion of research infrastructure. Tour operators’ body IAATO and parties to the Antarctic Treaty System should cooperate to better manage tourist activity — ensuring all tour operators abide by IAATO regulations regardless of whether they are IAATO members.”


Coral reef decline in Hong Kong


This 2015 video is called Hong Kong coral reef thrives despite pollution.

From The University of Hong Kong:

Was Hong Kong once a coral reef paradise?

October 15, 2020

Researchers from The University of Hong Kong’s School of Biological Sciences and The Swire Institute of Marine Science, have for the first time investigated the historical presence of coral communities in the Greater Bay Area, revealing a catastrophic range collapse and loss of diversity that occurred in the last several decades.

The research, published in the journal Science Advances, looks at fossil corals collected from over 11 sites around Hong Kong, and creates the first palaeoecological baseline for coral communities in the Greater Bay Area. Led by PhD candidate and National Geographic Explorer Jonathan CYBULSKI, the team revealed what coral genera were present in the past well before major human impacts, and these include: Acropora, Montipora, Turbinaria, Psammacora, Pavona, Hydnophora, Porites, Platygyra, Goniopora and Faviids.

Every fossil tells a story

“The data we collect helps us to create a sort of fossil time machine,” said Cybulski. “As corals grow naturally, parts of them will break off and fall to seafloor becoming a part of the sediment. Over time, many different layers of these coral skeletons will stack on top of one another. With a bit of effort we can core through the sediments and collect the different layers and reveal what coral communities were like through time,” Cybulski explained. By using this method, the team was able to collect skeletons from over 5,000 years ago, which they determined thanks to radiocarbon dating by collaborator Dr Yusuke YOKOYAMA of the Atmosphere and Ocean Research Institute at The University of Tokyo.

When the team compared their fossil data to a modern-day dataset collected by collaborators at Baptist University — Dr Jian Wen QIU and Dr James XIE, several striking conclusions were revealed. First, there has been about a 40% decrease in the number of different corals living in Southern Hong Kong waters. Second, the greatest loss was of the ecologically important yet highly-sensitive staghorn corals (Acropora), which now only lives in an area about 50% smaller than its historic range. Finally, the greatest impact and losses of corals occurred in waters that are closest to the Pearl River Estuary in the southwest and Tolo Harbor in the Northeast. Based on the data, the teams best guess for the timing of this coral community change is conservatively within the last century, but likely within the past few decades. The overall conclusion: poor water quality driven by increased development and lack of proper treatment is presently the regions greatest threat to the survival of corals.

More hope for corals

“This trend we saw of a diversity decline and the loss of Acropora is consistent with other research in different areas of the world,” Cybulski continues: “It’s particularly bad news for this region, as Acropora represents the only type of coral that is complex, and creates physical space that promotes greater biodiversity. The loss of this coral is similar to losing all the big trees in a forest.” However, similar to trees in a forest, Cybulski continued by saying there is hope for Hong Kong’s corals through conservation efforts.

Indeed, this historical research has already played a critical role in protecting and restoring corals locally. In July earlier this year, PhD Candidate Ms Vriko YU, also of the Baker Lab at HKU, pioneered a coral restoration project in Hoi Ha Wan Marine Park (Note 1). This project aims to restore and better understand what it will take to save Hong Kong corals, and was made possible due to the water quality improvements in the bay by the local government.

Using Cybulski’s historical data to infer the appropriate steps needed, the team is now returning corals such as Acropora that previously thrived in Hoi Ha, back to their proper home. To date, 100% of the reintroduced coral have survived. Furthermore, the team has documented several coral-associated invertebrates at the site, showing that this restored habitat is indeed increasing biodiversity. The team feels this multi-faceted model — historical research that identifies major stress targets for local improvements — can be used by other researchers who hope to give corals their greatest chance for future survival.

New pterosaur species discovery in Morocco


This 16 October 2020 video, in Vietnamese, is about the discovery of the new pterosaur species Leptostomia begaaensis.

From the University of Portsmouth in England:

Beak bone reveals pterosaur like no other

October 14, 2020

A new species of small pterosaur — similar in size to a turkey — has been discovered, which is unlike any other pterosaur seen before due to its long slender toothless beak.

The fossilised piece of beak was a surprising find and was initially assumed to be part of the fin spine of a fish, but a team of palaeontologists from the universities of Portsmouth and Bath spotted the unusual texture of the bone — seen only in pterosaurs — and realised it was a piece of beak.

Professor David Martill of the University of Portsmouth, who co-authored the study, said: “We’ve never seen anything like this little pterosaur before. The bizarre shape of the beak was so unique, at first the fossils weren’t recognised as a pterosaur.”

Careful searching of the late Cretaceous Kem Kem strata of Morocco, where this particular bone was found, revealed additional fossils of the animal, which led to the team concluding it was a new species with a long, skinny beak, like that of a Kiwi. …

The new species, Leptostomia begaaensis, used its beak to probe dirt and mud for hidden prey, hunting like present-day sandpipers or kiwis to find worms, crustaceans, and perhaps even small hard-shelled clams. …

Dr Nick Longrich, from the Milner Centre for Evolution at the University of Bath, said: “Leptostomia may actually have been a fairly common pterosaur, but it’s so strange — people have probably been finding bits of this beast for years, but we didn’t know what they were until now.”

Long, slender beaks evolved in many modern birds. Those most similar to Leptostomia are probing birds — like sandpipers, kiwis, curlews, ibises and hoopoes. Some of these birds forage in earth for earthworms while others forage along beaches and tidal flats, feeding on bristle worms, fiddler crabs, and small clams.

“Pterosaur fossils typically preserve in watery settings — seas, lakes, and lagoons — because water carries sediments to bury bones. Pterosaurs flying over water to hunt for fish tend to fall in and die, so they’re common as fossils. Pterosaurs hunting along the margins of the water will preserve more rarely, and many from inland habitats may never preserve as fossils at all.

“There’s a similar pattern in birds. If all we had of birds was their fossils, we’d probably think that birds were mostly aquatic things like penguins, puffins, ducks and albatrosses. Even though they’re a minority of the species, their fossil record is a lot better than for land birds like hummingbirds, hawks, and ostriches.”

Over time, more and more species of pterosaurs with diverse lifestyles have been discovered. That trend, the new pterosaur suggests, is likely to continue.

The paper was published today in Cretaceous Research.

American pikas fight climate change


This 2018 video from the USA says about itself:

An American Pika runs along his kingdom among the boulders.

From Arizona State University in the USA:

American Pikas show resiliency in the face of global warming

October 13, 2020

The American pika is a charismatic, diminutive relative of rabbits that some researchers say is at high risk of extinction due to climate change. Pikas typically live in cool habitats, often in mountains, under rocks and boulders. Because pikas are sensitive to high temperatures, some researchers predict that, as the Earth’s temperature rises, pikas will have to move ever higher elevations until they eventually run out of habitat and die out. Some scientists have claimed this cute little herbivore is the proverbial canary in the coal mine for climate change.

A new extensive review by Arizona State University emeritus professor Andrew Smith, published in the October issue of the Journal of Mammalogy, finds that the American pika is far more resilient in the face of warm temperatures than previously believed. While emphasizing that climate change is a serious threat to the survival of many species on Earth, Smith believes that the American pika currently is adapting remarkably well.

Smith has studied the American pika for more than 50 years and presents evidence from a thorough literature review showing that American pika populations are healthy across the full range of the species, which extends from British Columbia and Alberta, Canada, to northern New Mexico in the U.S.

Occupancy in potential pika habitat in the major western North American mountains was found to be uniformly high. Among sites that have been surveyed recently, there was no discernible climate signal that discriminated between the many occupied and relatively few unoccupied sites.

“This is a sign of a robust species,” Smith said.

Smith said most of the studies that have raised alarms about the fate of the pika are based on a relatively small number of restricted sites at the margins of the pika’s geographic range, primarily in the Great Basin. However, a recent comprehensive study of pikas evaluating 3,250 sites in the Great Basin found pikas living in over 73% of the suitable habitat investigated. Most important, the sites currently occupied by pikas and the sites where they are no longer found were characterized by similar climatic features.

“These results show that pikas are able to tolerate a broader set of habitat conditions than previously understood,” Smith adds.

Smith’s most interesting finding is that pikas are apparently much more resilient than previously believed, allowing them to survive even at hot, low-elevation sites. Bodie California State Historic Park, the Mono Craters, Craters of the Moon National Monument and Preserve, Lava Beds National Monument, and the Columbia River Gorge (all hot, low-elevation sites) retain active pika populations, demonstrating the adaptive capacity and resilience of pikas. Pikas cope with warm temperatures by retreating into their cool, underground talus habitat during the hot daylight hours and augment their restricted daytime foraging with nocturnal activity.

This doesn’t mean that some pika populations have not been pushed to their limit, leading to their disappearance from some habitats. Smith’s review points out that most documented cases of local loss of pika populations have occurred on small, isolated habitat patches.

“Due to the relatively poor ability of pikas to disperse between areas, those habitats are not likely to be recolonized, particularly in light of our warming climate,” Smith said. “In spite of the general health of pikas across their range, these losses represent a one-way street, leading to a gradual loss of some pika populations. Fortunately for pikas, their preferred talus habitat in the major mountain cordilleras is larger and more contiguous, so the overall risk to this species is low.”

Smith’s work emphasizes the importance of incorporating all aspects of a species’ behavior and ecology when considering its conservation status, and that all available data must be considered before suggesting a species is going extinct. For the American pika, the data conclusively show that rather than facing extinction, American pikas are changing their behaviors in ways that help them better withstand climate change, at least for now.