Ants transporting dead beetle, video


This video is about ants transporting a dead beetle on a sidewalk in the Netherlands, while meeting obstacles.

Everdien van der Bijl made this video.

New Dutch wildlife film, trailer


The makers of Dutch wildlife film De Nieuwe Wildernis have made a new film, about wildlife in the south-west of the Netherlands: Holland – Natuur in de Delta. This 26 June 2015 video is the trailer.

The new film will start in the cinemas on 24 September 2015.

Stop wild boar killing in Dutch Veluwe region


This 29 June 2015 from the Netherlands says about itself (translated):

Holiday time, en masse in early July the tourists come back to the Veluwe to look for wildlife …. but also en masse from July 1 hobby hunters will make the woods unsafe again with their firing at wild boar. The holiday feeling for the animals will be over then and they will become nocturnal animals instead of diurnal animals.

About 80% of healthy wild boar will be shot, so sows will again be ready for mating and will again get many piglets because nature wants to restore the equilibrium. It is very difficult for sows to give birth every year to a large litter of piglets and they are literally sucked dry by the piglets. The result is that the sows are skinny and lose much of their health resistance. This is clearly a form of animal abuse. Hobby hunters want only one thing and that’s shooting! They pay for it gladly and therefore they want their money’s worth. This method of control is very unnatural and inhumane. Animals are not TOYS so …. STOP THE HOBBY HUNTING!!!

Australian bittern in Victoria


This video is called Australasian Bittern.

From Birdline Victoria in Australia:

Tuesday 30 June

Australian Bittern

Western Treatment Plant (Werribee)–Western Lagoons

Thanks to Paul Newman who spotted the bird, the bird spent most of the time in the drain on the left hand side as you enter Western Lagoons via Gate 2. It did, however, move around the centre ponds as well. Time was about 4pm.

Bernie OKeefe

Gall midges, new Dutch and Belgian discoveries


This video says about itself:

25 August 2014

Gall midge (Cecidomyiidae sp.) oviposits on a fallen beech in a forest near Marburg, Hesse, Germany.

Translated from the Dutch entomologists of EIS Kenniscentrum Insecten:

Monday, June 29th, 2015

Soon a revision of the gall midges of the Benelux, with 11 new species for the Netherlands and 87 ones for Belgium, will appear. Gall midges are among the main producers of galls on leaves of plants. The midge Obolodiplosis robiniae which appeared first in the Netherlands as recently as 2008 proves surprisingly to be the most common species in our country.

Gall midges together with gall wasps, gall mites and gall producing fungi are the major producers of galls. The mosquitoe-like insects lay eggs in plants and the plants respond by making galls. These are fascinating structures of plant tissue, which provide food and shelter for the larvae of the midges.

Saharan silver ants survive 70 degrees centigrade


This video says about itself:

BBC Silver Desert Ant, Cataglyphis, Sahara Desert

19 feb. 2013

Clip from BBCs Africa, episode 5, Sahara 2013, narrated by Sir David Attenborough. Includes behind the scenes footage.

From Wildlife Extra:

How tiny Saharan Silver Ants stay alive in 70 degrees Centigrade

Researchers from the University of Zurich and the University of Washington have discovered two key strategies that enable Saharan silver ants to stay cool in one of the hottest terrestrial environments on Earth.

Saharan Silver Ants (Cataglyphis bombycina) forage in the Saharan Desert in the full midday sun when surface temperatures reach up to 70°C (158°F), and they must keep their body temperature below their critical thermal maximum of 53.6°C (128.48°F) most of the time.

In their wide-ranging foraging journeys, the ants search for corpses of insects and other arthropods that have succumbed to the thermally harsh desert conditions.

Being most active during the hottest moment of the day also allows these ants to avoid predatory desert lizards.

The project was initially triggered by speculation over whether the ants’ conspicuously silver coat was important in keeping them cool in the blistering heat.

Nanfang Yu, assistant professor of applied physics at Columbia Engineering, and his team found that the answer to this question was much broader once they realised the important role of infrared light in the ants’ protection.

They are the first people to demonstrate that the ants use a coat of uniquely shaped hairs to control electromagnetic waves over an extremely broad range – from the solar spectrum (the visible and near-infrared) to the thermal radiation spectrum (mid-infrared).

They have also identified in their paper, published in the US’s Science magazine, that different physical mechanisms are used in different spectral bands to realise the same biological function of reducing body temperature.

“This is a telling example of how evolution has triggered the adaptation of physical attributes to accomplish a physiological task and ensure survival, in this case to prevent Sahara Silver Ants from getting overheated,” Yu says.

“While there have been many studies of the physical optics of living systems in the ultraviolet and visible range of the spectrum, our understanding of the role of infrared light in their lives is much less advanced.

“Our study shows that light invisible to the human eye does not necessarily mean that it does not play a crucial role for living organisms.”

Their discovery that that there is a biological solution to a thermoregulatory problem could lead to the development of novel flat optical components that exhibit optimal cooling properties.

“Such biologically inspired cooling surfaces will have high reflectivity in the solar spectrum and high radiative efficiency in the thermal radiation spectrum,” Yu explains. “So this may generate useful applications such as a cooling surface for vehicles, buildings, instruments, and even clothing.”

Using electron microscopy and ion beam milling, Yu’s group discovered that the ants are covered on the top and sides of their bodies with a coating of uniquely shaped hairs with triangular cross-sections that keep them cool in two ways.

These hairs are highly reflective under the visible and near-infrared light, i.e., in the region of maximal solar radiation (the ants run at a speed of up to 0.7 meters per second and look like droplets of mercury on the desert surface).

The hairs are also highly emissive in the mid-infrared portion of the electromagnetic spectrum, where they serve as an anti-reflection layer that enhances the ants’ ability to offload excess heat via thermal radiation which is emitted from their hot bodies into the cold sky.

This passive cooling effect works under the full sun whenever the insects are exposed to a clear sky.

“To appreciate the effect of thermal radiation, think of the chilly feeling when you get out of bed in the morning,” says Yu. “Half of the energy loss at that moment is due to thermal radiation since your skin temperature is temporarily much higher than that of the surrounding environment.”

The researchers found that the enhanced reflectivity in the solar spectrum and enhanced thermal radiative efficiency have comparable contributions to reducing the body temperature of silver ants by 5 to 10 degrees compared to if the ants were without the hair cover.

“The fact that these silver ants can manipulate electromagnetic waves over such a broad range of spectrum shows us just how complex the function of these seemingly simple biological organs of an insect can be,” observes Norman Nan Shi, lead author of the study and PhD student who works with Yu at Columbia Engineering.

Yu and Shi collaborated on the project with Rüdiger Wehner, professor at the Brain Research Institute, University of Zürich, Switzerland, and Gary Bernard, electrical engineering professor at the University of Washington, Seattle, who are renowned experts in the study of insect physiology and ecology.

Yu and his team now plan to extend their research to other animals and organisms living in extreme environments, trying to learn the strategies these creatures have developed to cope with harsh environmental conditions.

“Animals have evolved diverse strategies to perceive and utilise electromagnetic waves,” says Yu. “Deep sea fish have eyes that enable them to maneouver and prey in dark waters, butterflies create colours from nanostructures in their wings, honey bees can see and respond to ultraviolet signals, and fireflies use flash communication systems.

“Organs evolved for perceiving or controlling electromagnetic waves often surpass analogous man-made devices in both sophistication and efficiency.

“Understanding and harnessing natural design concepts deepens our knowledge of complex biological systems and inspires ideas for creating novel technologies.”

See also here.

Amur tiger back in the wild


This video says about itself:

19 June 2015

A three year old Amur tiger has been successfully captured, collared and released into a mountainous region in the Russian Far East. The young male was identified as a ‘conflict tiger’ in a prey depleted area but rather than confining him to a life of captivity, the Russian government opted to give him a second chance. – See more here.

From Wildlife Extra about this:

WWF films tiger being released back to the wild

WWF has filmed an Amur Tiger being released back into the wild after spending time in a wild animal rehabilitation centre in the Russian Far East.

The tiger is a young male called Uporny, who was captured in November 2014 after being identified as a ‘conflict’ tiger.

He had been living in an area where there was a lack of prey and had killed dogs to survive. There were also fears that he could come into conflict with humans in a nearby town.

After undergoing the necessary health checks in a wild animal rehabilitation centre in the Russian Far East, Uporny was released into a sparsely inhabited mountainous area.

Uporny’s new home is an area with a good source of prey. It’s also home to a female Amur tiger, which provides hope that Uporny will not only continue to live wild and free, but also breed – contributing to the recovering tiger population in Russia.

The Russian government Forest Department (Ministry of Natural Resource of Khabarovsky Province) organised and implemented the translocation operation with the help of WWF and the Amur Tiger Center.

“This is a very rare piece of footage, showing the release of a healthy, powerful male tiger back into the wild, where he belongs,” says Rebecca May, Asia Regional Manager at WWF-UK.

“A huge team effort and great expertise was involved, including that of colleagues in WWF Russia. We wish him well in his new home.”

For his release into the wild, the tiger was fitted with a lightweight radio collar. The collar has a special function that allows it to drop off when the tracking team are satisfied with his progress.

Having been flagged as a potential conflict tiger, Uporny will be monitored until he is well established in his new area. For the first month, a team of specialists will be tracking his location and eating habits on a constant basis, using GPS data sent from the collar as well as tracking him on the ground.

Once the collar detaches, he will be monitored using camera traps and the recording of his pugmarks.