La Palma, Canary islands, wildlife video


This 23 June 2019 video shows flowers, butterflies, birds, lizards and other wildlife on La Palma, one of the Canary islands.

Advertisements

Giant extinct Purussaurus caimans, video


This 18 Augustus 2019 video says about itself:

A Giant Extinct CaimanPurussaurus

In the depths of the prehistoric Amazon lurks one of the largest predators the Earth has ever seen.

Purussaurus lived in the Miocene epoch.

Common basilisk, variegated squirrel quarrel in Panama


This video from Panama says about itself:

Common Basilisk Takes Food From Variegated Squirrel – Aug 16, 2019

A Variegated Squirrel and a Common Basilisk were eating at the feeder in relative peace until the basilisk decided that it wanted the exact piece of fruit the squirrel was eating.

I saw both species in Costa Rica.

Psittacosaurus dinosaur brains, from baby to adult


This 2016 video from England says about itself:

How to bring a dinosaur to life in technicolour | Natural History Museum [in London]

A science team from the University of Bristol and palaeoartist Robert Nicholls have created a life-size model of Psittacosaurus featuring real colour patterns. Discover how they did this and what it tells us about the tiny dinosaur’s life 130 million years ago. Find out about fossil evidence of colour in the Museum‘s Colour and Vision exhibition (open until 6 November 2016).

From the University of Bristol in England:

Dinosaur brains from baby to adult

August 15, 2019

New research by a University of Bristol palaeontology post-graduate student has revealed fresh insights into how the braincase of the dinosaur Psittacosaurus developed and how this tells us about its posture.

Psittacosaurus was a very common dinosaur in the Early Cretaceous period — 125 million years ago — that lived in eastern Asia, especially north-east China.

Hundreds of samples have been collected which show it was a beaked plant-eater, an early representative of the Ceratopsia, which had later relatives with great neck frills and face horns, such as Triceratops.

The babies hatched out as tiny, hamster-sized beasts and grew to two metres long as adults.

As they grew, the brain changed in shape, from being crammed into the back of the head, behind the huge eyes in the hatchling, to being longer, and extending under the skull roof in the adults.

The braincase also shows evidence for a change in posture as the animals grew. There is good evidence from the relative lengths of the arms and legs, that baby Psittacosaurus scurried about on all fours, but by the age of two or three, they switched to a bipedal posture, standing up on their elongate hind legs and using their arms to grab plant food.

Claire Bullar from the University of Bristol’s School of Earth Sciences led the new research which has been published this week in PeerJ.

She said: “I was excited to see that the orientation of the semi-circular canals changes to show this posture switch.

“The semi-circular canals are the structures inside our ears that help us keep balance, and the so-called horizontal semi-circular canal should be just that — horizontal — when the animal is standing in its normal posture.

“This is just what we see, with the head of Psittacosaurus pointing down and forwards when it was a baby — just right for moving on all-fours. Then, in the teen or adult, we see the head points exactly forwards, and not downwards, just right for a biped.”

Co-supervisor Dr Qi Zhao from the Institute of Vertebrate Palaeontology and Palaeoanthropology (IVPP) in Beijing, where the specimens are housed, added: “It’s great to see our idea of posture shift confirmed, and in such a clear-cut way, from the orientation of the horizontal ear canal.

“It’s also amazing to see the results of high-quality CT scanning in Beijing and the technical work by Claire to get the best 3D models from these scan data.”

Professor Michael Ryan of Carleton University, Ottawa, Canada, another collaborator, said: “This posture shift during growth from quadruped to biped is unusual for dinosaurs, or indeed any animal. Among dinosaurs, it’s more usual to go the other way, to start out as a bipedal baby, and then go down on all fours as you get really huge.

“Of course, adult Psittacosaurus were not so huge, and the shift maybe reflects different modes of life: the babies were small and vulnerable and so probably hid in the undergrowth, whereas bipedalism allowed the adults to run faster and escape their predators.”

Professor Michael Benton, also from the University of Bristol’s School of Earth Sciences and another collaborator, added: “This is a great example of classic, thorough anatomical work, but also an excellent example of international collaboration.

“The Bristol Palaeobiology Research Group has a long-standing collaboration with IVPP, and this enables the mix of excellent specimens and excellent research.

“Who would have imagined we could reconstruct posture of dinosaurs from baby to adult, and with multiple lines of evidence to confirm we got it right.”

Top Ten of most beautiful snakes


This 2017 video says about itself:

10 Most Beautiful Snakes In The World

When it comes to snakes, most people would actually think of scary venomous animals. While some snakes are venomous, some are actually quite harmless to humans.

Despite their venomous / non-venomous properties, some snakes are actually really beautiful. In this video, we are going to look at 10 most beautiful / pretty / prettiest / gorgeous / wonderful looking snake species in the world.

These snake species include Asian vine snake, blue racer, eastern coral snake, green tree python, iridescent shieldtail, red-headed krait, Formosan odd-scaled snake, Honduran milk snake, Brazilian rainbow boa and San Francisco garter snake.

Were Coelophysis dinosaurs cannibals?


This 14 August 2019 video says about itself:

Was This Dinosaur a Cannibal?

Paleontologists have spent the better part of two decades debating whether Coelophysis ate its own kind. It turns out, the evidence that scientists have had to study in order to answer that question includes some of the strangest and grossest fossils that any expert would ever get to see.

Dinosaur age Triassic tuatara relative discovery


This 5 February 2018 video from Britain says about itself:

New small reptile species that lived 205 million years ago discovered in a quarry in South Wales

Fossils discovered in a quarry in South Wales have been identified as a new small species of reptile that lived 205 million years ago. The species has been called Clevosaurus cambrica, the second part is Latin and refers to the fact that it comes from Wales.

They belong to a new species of Clevosaurus (Gloucester lizard), named in 1939 after Clevum, the Latin name of Gloucester.

The new species, Clevosaurus cambrica lived side by side with a small dinosaur, Pantydraco, and a crocodile-like animal, Terrestrisuchus.

We compared it with other examples of Clevosaurus from places around Bristol and South Gloucestershire, but our new beast is quite different in the arrangement of its teeth. In the Late Triassic period, the foothills of south Wales and southwest England formed an archipelago that was inhabited by small dinosaurs and relatives of the tuatara, a reptilian ‘living fossil’ from New Zealand. The limestone quarries of the region have many caves or fissures that contain sediments filled with bones of small species of reptiles that collapsed at the feet of dinosaurs.

Now, another relative of these reptiles, found far from Wales.

From Midwestern University in the USA:

In the shadow of the dinosaurs

A new sphenodontian from Brazil is the oldest record of the group in Gondwana

August 14, 2019

Research published this Wednesday (August 14th) in Scientific Reports describes Clevosaurus hadroprodon, a new reptile species from Rio Grande do Sul state in southern Brazil. Its fossils remains — jaws and associated skull bones — were collected from Triassic rocks (c. 237-228 million-years old) making it the oldest known fossil of its kind in Gondwana, the southern supercontinent that would eventually become Africa, Antarctica, Australia, India, and South America.

Clevosaurus hadroprodon was a small animal, similar in size with common house geckos. It belongs to the Sphenodontia, a group of lepidosaurs (which also includes snakes, lizards and amphisbaenians), that was very diverse and widespread during the Mesozoic era (the “Age of Dinosaurs”), but today has only one remaining living species in New Zealand. Clevosaurus hadroprodon is the oldest member of the Clevosauridae, a group of small sphenodonts that were the first globally distributed lepidosaurs with fossils from the Late Triassic and Early Jurassic of North America, Europe, Asia, Africa and South America.

The dentition of Clevosaurus hadroprodon is an unexpected mix of primitive and derived teeth. It is the oldest occurrence of the typical fully acrodont dentition (teeth fused to the top of the jaw bones) of sphenodontians, but most of its teeth are relatively simple and blade-like, which differs from other, only slightly younger Clevosaurus species that possess well-developed medial-posteromedial (side-to-side) expansions of the teeth for complex grinding. “However, Clevosaurus hadroprodon also possess a large, blunt, tusk-like tooth in the first tooth position of the both premaxilla (upper jaw) and of dentary (lower jaw). This feature is typically observed only in later sphenodontian lineages” says Annie Schmaltz Hsiou, Associate Professor at the University of São Paulo and head of the study. The name “hadroprodon” is Greek for “larger first tooth” in reference to these tusk-like teeth.

“Clevosaurus hadroprodon is an important discovery because it combines a relatively primitive sphenodontian-type tooth row with the presence of massive tusk-like teeth that were possibly not for feeding, but rather used for mate competition or defense. If correct, this means that non-feeding dental specializations predated changes in the sphenodontian dentition related to feeding strategies. This is a very exciting discovery.” says co-author Randall Nydam, Professor at Midwestern University (US).

In addition to its unique dentition, the authors stress that Clevosaurus hadroprodon also adds to the growing evidence that the early diversification of sphenodontians occurred in the widely separated regions of Gondwana destined to become South American and India. This illustrates the importance of the role of the Gondwanan lepidosaur fauna in our growing understanding of the earliest stages of sphenodontian evolution and the global biogeographic distribution of lepidosaurs.