Gliding dinosaurs, new research


This 2017 video says about itself:

The Five-Winged Dinosaur

Microraptor was a very important discovery that added a great deal to our knowledge on how birds evolved from dinosaur ancestors. This creature has helped to create a better picture of the evolution of flightless dinosaurs to fully flight-capable ones, and the quality of its incredible fossils has even allowed scientists to reveal what colour it was when Microraptor was alive.

From ScienceDaily:

These two bird-sized dinosaurs evolved the ability to glide, but weren’t great at it

October 22, 2020

Despite having bat-like wings, two small dinosaurs, Yi and Ambopteryx, struggled to fly, only managing to glide clumsily between the trees where they lived, researchers report October 22 in the journal iScience. Unable to compete with other tree-dwelling dinosaurs and early birds, they went extinct after just a few million years. The findings support that dinosaurs evolved flight in several different ways before modern birds evolved.

“Once birds got into the air, these two species were so poorly capable of being in the air that they just got squeezed out,” says first author Thomas Dececchi, Assistant Professor of Biology at Mount Marty University. “Maybe you can survive a few million years underperforming, but you have predators from the top, competition from the bottom, and even some small mammals adding into that, squeezing them out until they disappeared.”

Yi and Ambopteryx were small animals from Late Jurassic China, living about 160 million years ago. Weighing in at less than two pounds, they are unusual examples of theropod dinosaurs, the group that gave rise to birds. Most theropods were ground-loving carnivores, but Yi and Ambopteryx were at home in the trees and lived on a diet of insects, seeds, and other plants.

Curious about how these animals fly, Dececchi and his collaborators scanned fossils using laser-stimulated fluorescence (LSF), a technique that uses laser light to pick up soft-tissue details that can’t be seen with standard white light. Later, the team used mathematical models to predict how they might have flown, testing many different variables like weight, wingspan, and muscle placement.

“They really can’t do powered flight. You have to give them extremely generous assumptions in how they can flap their wings. You basically have to model them as the biggest bat, make them the lightest weight, make them flap as fast as a really fast bird, and give them muscles higher than they were likely to have had to cross that threshold,” says Dececchi. “They could glide, but even their gliding wasn’t great.”

While gliding is not an efficient form of flight, since it can only be done if the animal has already climbed to a high point, it did help Yi and Ambopteryx stay out of danger while they were still alive.

“If an animal needs to travel long distances for whatever reason, gliding costs a bit more energy at the start, but it’s faster. It can also be used as an escape hatch. It’s not a great thing to do, but sometimes it’s a choice between losing a bit of energy and being eaten,” says Dececchi. “Once they were put under pressure, they just lost their space. They couldn’t win on the ground. They couldn’t win in the air. They were done.”

The researchers are now looking at the muscles that powered Yi and Ambopteryx to construct an accurate image of these bizarre little creatures. “I’m used to working with the earliest birds, and we sort of have an idea of what they looked like already,” Dececchi says. “To work where we’re just trying to figure out the possibilities for a weird creature is kind of fun.”

The authors were supported by Mount Marty University and The University of Hong Kong.

Jurassic mammals lived more like reptiles


This May 2019 video is called The Mammals that Lived Alongside the Dinosaurs.

From the University of Bristol in England:

Ancient tiny teeth reveal first mammals lived more like reptiles

October 12, 2020

Pioneering analysis of 200 million-year-old teeth belonging to the earliest mammals suggests they functioned like their cold-blooded counterparts — reptiles, leading less active but much longer lives.

The research, led by the University of Bristol, UK and University of Helsinki, Finland, published today in Nature Communications, is the first time palaeontologists have been able to study the physiologies of early fossil mammals directly, and turns on its head what was previously believed about our earliest ancestors.

Fossils of teeth, the size of a pinhead, from two of the earliest mammals, Morganucodon and Kuehneotherium, were scanned for the first time using powerful X-rays, shedding new light on the lifespan and evolution of these small mammals, which roamed the earth alongside early dinosaurs and were believed to be warm-blooded by many scientists. This allowed the team to study growth rings in their tooth sockets, deposited every year like tree rings, which could be counted to tell us how long these animals lived. The results indicated a maximum lifespan of up to 14 years — much older than their similarly sized furry successors such as mice and shrews, which tend to only survive a year or two in the wild.

“We made some amazing and very surprising discoveries. It was thought the key characteristics of mammals, including their warm-bloodedness, evolved at around the same time,” said lead author Dr Elis Newham, Research Associate at the University of Bristol, and previously PhD student at the University of Southampton during the time when this study was conducted.

“By contrast, our findings clearly show that, although they had bigger brains and more advanced behaviour, they didn’t live fast and die young but led a slower-paced, longer life akin to those of small reptiles, like lizards.”

Using advanced imaging technology in this way was the brainchild of Dr Newham’s supervisor Dr Pam Gill, Senior Research Associate at the University of Bristol and Scientific Associate at the Natural History Museum London, who was determined to get to the root of its potential.

“A colleague, one of the co-authors, had a tooth removed and told me they wanted to get it X-rayed, because it can tell all sorts of things about your life history. That got me wondering whether we could do the same to learn more about ancient mammals,” Dr Gill said.

By scanning the fossilised cementum, the material which locks the tooth roots into their socket in the gum and continues growing throughout life, Dr Gill hoped the preservation would be clear enough to determine the mammal’s lifespan.

To test the theory, an ancient tooth specimen belonging to Morganucodon was sent to Dr Ian Corfe, from the University of Helsinki and the Geological Survey of Finland, who scanned it using high-powered Synchrotron X-ray radiation.

“To our delight, although the cementum is only a fraction of a millimetre thick, the image from the scan was so clear the rings could literally be counted,” Dr Corfe said.

It marked the start of a six-year international study, which focused on these first mammals, Morganucodon and Kuehneotherium, known from Jurassic rocks in South Wales, UK, dating back nearly 200 million years.

“The little mammals fell into caves and holes in the rock, where their skeletons, including their teeth, fossilised. Thanks to the incredible preservation of these tiny fragments, we were able to examine hundreds of individuals of a species, giving greater confidence in the results than might be expected from fossils so old,” Dr Corfe added.

The journey saw the researchers take some 200 teeth specimens, provided by the Natural History Museum London and University Museum of Zoology Cambridge, to be scanned at the European Synchrotron Radiation Facility and the Swiss Light Source, among the world’s brightest X-ray light sources, in France and Switzerland, respectively.

In search of an exciting project, Dr Newham took this up for the MSc in Palaeobiology at the University of Bristol, and then a PhD at the University of Southampton.

“I was looking for something big to get my teeth into and this more than fitted the bill. The scanning alone took over a week and we ran 24-hour shifts to get it all done. It was an extraordinary experience, and when the images started coming through, we knew we were onto something,” Dr Newham said.

Dr Newham was the first to analyse the cementum layers and pick up on their huge significance.

“We digitally reconstructed the tooth roots in 3-D and these showed that Morganucodon lived for up to 14 years, and Kuehneotherium for up to nine years. I was dumbfounded as these lifespans were much longer than the one to three years we anticipated for tiny mammals of the same size,” Dr Newham said.

“They were otherwise quite mammal-like in their skeletons, skulls and teeth. They had specialised chewing teeth, relatively large brains and probably had hair, but their long lifespan shows they were living life at more of a reptilian pace than a mammalian one. There is good evidence that the ancestors of mammals began to become increasingly warm-blooded from the Late Permian, more than 270 million years ago, but, even 70 million years later, our ancestors were still functioning more like modern reptiles than mammals”

While their pace-of-life remained reptilian, evidence for an intermediate ability for sustained exercise was found in the bone tissue of these early mammals. As a living tissue, bone contains fat and blood vessels. The diameter of these blood vessels can reveal the maximum possible blood flow available to an animal, critical for activities such as foraging and hunting.

Dr Newham said: “We found that in the thigh bones of Morganucodon, the blood vessels had flow rates a little higher than in lizards of the same size, but much lower than in modern mammals. This suggests these early mammals were active for longer than small reptiles but could not live the energetic lifestyles of living mammals.”

Dinosaur age insect mimicked lichen


Ecological reconstruction of a 165-million-year-old lacewing mimicking a lichen that existed during the same time period. Image credit: Xiaoran Zuo

From eLife:

Earliest fossil evidence of an insect lichen mimic

September 1, 2020

Scientists have uncovered the earliest known evidence of an insect mimicking a lichen as a survival strategy, according to new findings published today in eLife.

The study suggests that the Jurassic moth lacewing Lichenipolystoechotes mimicked the fossil lichen Daohugouthallus to help conceal itself from predators. This interaction predates modern lichen-insect associations by 165 million years, indicating that the lichen-insect mimicry (or ‘mimesis’) system was well established during the mid-Mesozoic period and provided lacewings with highly-honed survival strategies.

Animals sometimes mimic other organisms or use camouflage to deceive predators. Lichens, which consist of a fungus and alga living in close proximity, sometimes have a plant-like appearance and are occasionally mimicked by modern animals and insects. One of the most well-known cases of a lichen-insect association is when the peppered moth acquired a mutation that turned it black during the Industrial Revolution in Britain, allowing the moth to blend in with tree trunks and lichen darkened by soot.

“As lichen models are almost absent in the fossil record of mimesis, it is still unclear as to when and how the mimicry association between lichen and insect first arose,” explains lead author Hui Fang, a PhD student at the College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China. “The key to answer this question is to find early examples of a lichen-like insect and a co-occuring lichen fossil.”

Fang and her team discovered deposits at the Daohugou 1 locality of Inner Mongolia in northeastern China that showed the 165-million-year-old lichen mimesis. The samples involved two lacewing species resembling a co-existing lichen from the latest Middle Jurassic.

After confirming the occurrence of the Jurassic lichen, the team then documented this mimetic relationship by describing structural similarities and detailed measurements of the lacewing and lichen. Their results suggest that when the lacewings rested in a lichen-rich habitat, a near-perfect match of their appearances would assist the insects’ concealment from predators.

“Our findings indicate that a micro-ecosystem consisting of lichens and insects existed 165 million years ago in Northeastern China,” concludes senior author Yongjie Wang, Associated Professor at the College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing. “This adds to our current understanding of the interactions between insects and their surroundings in the Mesozoic Era, and implies that there are many more interesting insect relationships awaiting discovery.”

Dilophosaurus dinosaurs, new research


This 2018 video says about itself:

What Jurassic Park Got WRONG – The Dilophosaurus

Jurassic Park brought millions of people around the world to fall in love with Dinosaurs, but they wrong about some key aspects regarding the Dilophosaurus. With Jurassic World Fallen Kingdom nearing release, we want to take you on a ride looking over the Dinosaurs brought to life by Ingen and the makers of Jurassic Park, and see how they stack up to the real thing!

From the University of Texas at Austin in the USA:

Famous ‘Jurassic Park’ dinosaur is less lizard, more bird

July 7, 2020

From movies to museum exhibits, the dinosaur Dilophosaurus is no stranger to pop culture. Many probably remember it best from the movie “Jurassic Park,” where it’s depicted as a venom-spitting beast with a rattling frill around its neck and two paddle-like crests on its head.

The dinosaur in the movie is mostly imagination, but a new comprehensive analysis of Dilophosaurus fossils is helping to set the record straight. Far from the small lizard-like dinosaur in the movies, the actual Dilophosaurus was the largest land animal of its time, reaching up to 20 feet in length, and it had much in common with modern birds.

The analysis was published open access in the Journal of Paleontology on July 7.

Dilophosaurus lived 183 million years ago during the Early Jurassic. Despite big-screen fame, scientists knew surprisingly little about how the dinosaur looked or fit into the family tree, until now.

“It’s pretty much the best, worst-known dinosaur,” said lead author Adam Marsh. “Until this study, nobody knew what Dilophosaurus looked like or how it evolved.”

Seeking answers to these questions, Marsh conducted an analysis of the five most-complete Dilophosaurus specimens while earning his Ph.D. from The University of Texas at Austin’s Jackson School of Geosciences. He is now the lead paleontologist at Petrified Forest National Park.

The analysis is co-authored by Jackson School Professor Timothy Rowe, who discovered two of the five Dilophosaurus specimens that were studied.

The study adds clarity to a muddled research record that reaches back to the first Dilophosaurus fossil to be discovered, the specimen that set the standard for all following Dilophosaurus discoveries. That fossil was rebuilt with plaster, but the 1954 paper describing the find isn’t clear about what was reconstructed — a fact that makes it difficult to determine how much of the early work was based on the actual fossil record, Marsh said.

Early descriptions characterize the dinosaur as having a fragile crest and weak jaws, a description that influenced the depiction of Dilophosaurus in the “Jurassic Park” book and movie as a svelte dinosaur that subdued its prey with venom.

But Marsh found the opposite. The jawbones show signs of serving as scaffolding for powerful muscles. He also found that some bones were mottled with air pockets, which would have helped reinforce the skeleton, including its dual crest.

“They’re kind of like bubble wrap — the bone is protected and strengthened,” Marsh said.

These air sacs are not unique to Dilophosaurus. Modern birds and the world’s most massive dinosaurs also have bones filled with air. In both cases, the air sacs lighten the load, which helped big dinosaurs manage their bulky bodies and birds take to the skies.

Many birds use the air sacs to perform other functions, from inflating stretchy areas of skin during mating rituals, to creating booming calls and dispersing heat. The intricate array of air pockets and ducts that extend from Dilophosaurus’ sinus cavity into its crests means that the dinosaur may have been able to perform similar feats with its headgear.

All the specimens Marsh examined came from the Kayenta Formation in Arizona and belong to the Navajo Nation. The University of California Museum of Paleontology holds in trust three of the specimens. The Jackson School Museum of Earth History holds the two discovered by Rowe.

“One of the most important responsibilities of our museum is curation,” said Matthew Brown, director of the Vertebrate Paleontology Collections. “We are very excited to help share these iconic Navajo Nation fossils with the world through research and educational outreach, as well as preserve them for future generations.”

To learn more about how the fossils compared with one another, Marsh recorded hundreds of anatomical characteristics of each fossil. He then used an algorithm to see how the specimens compared with the first fossil — which confirmed that they were indeed all Dilophosaurus.

The algorithm also revealed that there’s a significant evolutionary gap between Dilophosaurus and its closest dinosaur relatives, which indicates there are probably many other relatives yet to be discovered.

The revised Dilophosaurus record will help paleontologists better identify specimens going forward. Marsh said that the research is already being put into action. In the midst of his analysis, he discovered that a small braincase in the Jackson School’s collections belonged to a Dilophosaurus.

“We realized that it wasn’t a new type of dinosaur, but a juvenile Dilophosaurus, which is really cool,” Marsh said.

Permian-Triassic mass extinction and biodiversity


This 2018 video says about itself:

The Permian Extinction

252 million years ago 96% of all marine species and 70% of terrestrial vertebrate species vanished, this was the Permian extinction the second greatest mass extinction the earth has ever witnessed.

From the University of Leeds in England:

Permo-Triassic biodiversity patterns could offer a window into our climate future

June 17, 2020

A new study by the University of Leeds and University of Oxford has examined spatial biodiversity patterns across the Permo-Triassic mass extinction event (c. 252 million years ago). The Permo-Triassic mass extinction represents the most catastrophic event in the last 500 million years of evolutionary history and caused the loss of up 95% of species because of a cocktail of volcanic effects including extreme greenhouse warming.

Examination of the global distribution of tetrapods — amphibians, reptiles and their relatives — reveals that biodiversity was consistently higher at temperate latitudes, both before and after the mass extinction. This is in strong contrast to the modern day, where the greatest levels of biodiversity are found in the low latitudes of the tropics, near the equator.

The study, published in the journal Proceedings of the Royal Society B, shows how patterns of biodiversity can respond when temperatures in tropical regions become too extreme to support high levels of biodiversity. Examining the responses of organisms to rapid climatic changes in the distant past can offer a window into the potential impact of future global warming.

Study lead author Bethany Allen, PhD researcher at the School of Earth and Environment at Leeds, said: “Higher equatorial diversity has been recognised for over 200 years, but the consistency of this pattern throughout Earth history has been uncertain.

“The Late Permian to Middle Triassic is an ideal time interval to examine biodiversity trends. It is characterised by large-scale volcanic episodes, extreme greenhouse temperatures, and the most severe mass extinction event in Earth’s history.

“Our study shows that the regions we now associate with some of the richest and most diverse ecosystems on Earth were once too hot to support communities of large animals, likely reaching over 40°C. In the face of a rapidly warming planet, this window into our past could offer a glimpse into the future of those regions and the very real risk to the species that live there if we do not act to curb our carbon emissions and limit global warming.”

252 million years ago, at the transition from the Permian to the Triassic epoch, most of the life forms existing on Earth became extinct. Using latest analytical methods and detailed model calculations, scientists have now succeeded for the first time to provide a conclusive reconstruction of the geochemical processes that led to this unprecedented biotic crisis: here.

Australian big carnivorous dinosaurs, new discovery


This June 2019 video is called Australian Dinosaurs (Part 1).

This video is the sequel.

From the University of Queensland in Australia:

Tracking Australia’s gigantic carnivorous dinosaurs

June 17, 2020

North America had the T. rex, South America had the Giganotosaurus and Africa the Spinosaurus — now evidence shows Australia had gigantic predatory dinosaurs.

The discovery came in University of Queensland research, led by palaeontologist Dr Anthony Romilio, which analysed southern Queensland dinosaur footprint fossils dated to the latter part of the Jurassic Period, between 165 and 151 million-year-ago.

“I’ve always wondered, where were Australia’s big carnivorous dinosaurs?” Dr Romilio said.

“But I think we’ve found them, right here in Queensland.

“The specimens of these gigantic dinosaurs were not fossilised bones, which are the sorts of things that are typically housed at museums.

“Rather, we looked at footprints, which — in Australia — are much more abundant.

“These tracks were made by dinosaurs walking through the swamp-forests that once occupied much of the landscape of what is now southern Queensland.”

Most of the tracks used in the study belong to theropods, the same group of dinosaurs that includes Australovenator, Velociraptor, and their modern-day descendants, birds.

Dr Romilio said these were clearly not bird tracks.

“Most of these footprints are around 50 to 60 centimetres in length, with some of the really huge tracks measuring nearly 80 centimetres,” he said.

“We estimate these tracks were made by large-bodied carnivorous dinosaurs, some of which were up to three metres high at the hips and probably around 10 metres long.

“To put that into perspective, T. rex got to about 3.25 metres at the hips and attained lengths of 12 to 13 metres long, but it didn’t appear until 90 million years after our Queensland giants.

“The Queensland tracks were probably made by giant carnosaurs — the group that includes the Allosaurus.

“At the time, these were probably some of the largest predatory dinosaurs on the planet.”

Despite the study providing important new insights into Australia’s natural heritage, the fossils are not a recent discovery.

“The tracks have been known for more than half a century,” Dr Romilio said.

“They were discovered in the ceilings of underground coal mines from Rosewood near Ipswich, and Oakey just north of Toowoomba, back in the 1950s and 1960s.

“Most hadn’t been scientifically described, and were left for decades in museum drawers waiting to be re-discovered.

“Finding these fossils has been our way of tracking down the creatures from Australia’s Jurassic Park.”

Jurassic marine crocodiles, video


This 11 June 2020 video says about itself:

When Crocodiles Swam The Oceans

Crocodiles are good swimmers and often live near river mouths near the ocean and some of them even make brief excursions into the ocean. This means they are always at a tipping point of becoming marine animals. This is known because it has happened on several occasions throughout prehistory, but in the Jurassic, one group of crocs called the thalattosuchians would take this a step further in following whales and other marine reptiles in becoming fish-like.

Were Allosaurus dinosaurs cannibals?


This 2018 BBC video says about itself:

Steve Backshall looks at the Majungasaurus, the only know dinosaur to eat others from its own species.

From PLOS ONE, 27 May 2020:

High frequencies of theropod bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem

Abstract

Bite marks provide direct evidence for trophic interactions and competition in the fossil record. However, variations in paleoecological dynamics, such as trophic relationships, feeding behavior, and food availability, govern the frequency of these traces.

Theropod bite marks are particularly rare, suggesting that members of this clade might not often focus on bone as a resource, instead preferentially targeting softer tissues.

Here, we present an unusually large sample of theropod bite marks from the Upper Jurassic Mygatt-Moore Quarry (MMQ). We surveyed 2,368 vertebrate fossils from MMQ in this analysis, with 684 specimens (28.885% of the sample) preserving at least one theropod bite mark.

This is substantially higher than in other dinosaur-dominated assemblages, including contemporaneous localities from the Morrison Formation. Observed bite marks include punctures, scores, furrows, pits, and striations. Striated marks are particularly useful, diagnostic traces generated by the denticles of ziphodont teeth, because the spacing of these features can be used to provide minimum estimates of trace maker size.

In the MMQ assemblage, most of the striations are consistent with denticles of the two largest predators known from the site: Allosaurus and Ceratosaurus. One of the bite marks suggests that a substantially larger theropod was possibly present at the site and are consistent with large theropods known from other Morrison Formation assemblages (either an unusually large Allosaurus or a separate, large-bodied taxon such as Saurophaganax or Torvosaurus).

The distribution of the bite marks on skeletal elements, particularly those found on other theropods, suggest that they potentially preserve evidence of scavenging, rather than active predation. Given the relative abundances of the MMQ carnivores, partnered with the size-estimates based on the striated bite marks, the feeding trace assemblage likely preserves the first evidence of cannibalism in Allosaurus.

See also here.

Ichthyosaur discovery in London Natural History Museum


This 27 January 2020 video from England says about itself:

197-Million-Year-Old Ichthyosaur Fossil Saved

The prehistoric fossil was discovered by amateur fossil hunter Jon Gopsill when he was out walking his dogs on 14 December 2019. The five-and-a-half foot long marine reptile had been exposed by recent storms. The specimen was successfully extracted on 27 December by experts working against the clock in the intertidal zone of Bridgwater Bay National Nature Reserve.

From Baylor University in the USA:

Fishing rod ‘selfie stick’ and scientific sleuthing turn up clues to extinct sea reptile

May 19, 2020

A Russian paleontologist visiting the Natural History Museum in London desperately wanted a good look at the skeleton of an extinct aquatic reptile, but its glass case was too far up the wall. So he attached his digital camera to a fishing rod and — with several clicks — snagged a big one, scientifically speaking.

Images from the “selfie stick” revealed that the creature, whose bones were unearthed more than a century ago on a coast in southern England, seemed very similar to a genus of ichthyosaurs he recognized from Russian collections.

He emailed the photos of the dolphin-like ichthyosaur to fellow paleontologist Megan L. Jacobs, a Baylor University doctoral candidate in geosciences. She quickly realized that the animal’s skeletal structure matched not only some ichthyosaurs she was studying in a fossil museum on the English Channel coast, but also some elsewhere in the United Kingdom.

Jacobs and paleontologist Nikolay G. Zverkov of the Russian Academy of Sciences — who “fished” for the ichthyosaur — merged their research, studying their collective photos and other materials and ultimately determining that the Russian and English ichthyosaurs were of the same genus and far more common and widespread than scientists believed.

Their study is published in the Zoological Journal of the Linnean Society.

“Ichthyosaurs swam the seas of our planet for about 76 million years,” Jacobs said. “But this 5-foot ichthyosaur from some 150 million years ago was the least known and believed to be among the rarest ichthyosaurs. The skeleton in the case, thought to be the only example of the genus, has been on display in the Natural History Museum in London since 1922.

Nikolay’s excellent detailed photos significantly expand knowledge of Nannopterygius enthekiodon,” she said. “Now, after finding examples from museum collections across the United Kingdom, Russia and the Arctic — as well as several other Nannopterygius species — we can say Nannopterygius is one of the most widespread genera of ichthyosaurs in the Northern Hemisphere.”

Additionally, the study described a new species, Nannopterygius borealis, dating from about 145 million years ago in a Russian archipelago in the Arctic. The new species is the northernmost and youngest representative of its kind, Jacobs said.

Previously, for the Middle and Late Jurassic epochs, the only abundant and most commonly found ichthyosaur was Ophthalmosaurus, which had huge eyes and was about 20 feet long. It was known from hundreds of specimens, including well-preserved skeletons from the Middle Jurassic Oxford Clay Formation of England, Jacobs said.

“For decades, the scientific community thought that Nannopterygius was the rarest and most poorly known ichthyosaur of England,” Zverkov said. “Finally, we can say that we know nearly every skeletal detail of these small ichthyosaurs and that these animals were widespread. The answer was very close; what was needed was just a fishing rod.”

Jurassic squid attacked fish, new discovery


A close-up image showing the damaged head and body of the Dorsetichthys bechei fish with the arms of the cephalopod Clarkeiteuthis montefiorei clamped around it. Credit: Malcolm Hart, Proceedings of the Geologists’ Association

This photo shows a close-up image of the damaged head and body of the Dorsetichthys bechei fish with the arms of the cephalopod Clarkeiteuthis montefiorei clamped around it. Credit: Malcolm Hart, Proceedings of the Geologists’ Association.

From the University of Plymouth in England:

Fossil reveals evidence of 200-million-year-old ‘squid‘ attack

May 6, 2020

Scientists have discovered the world’s oldest known example of a squid-like creature attacking its prey, in a fossil dating back almost 200 million years.

The fossil was found on the Jurassic coast of southern England in the 19th century and is currently housed within the collections of the British Geological Survey in Nottingham.

In a new analysis, researchers say it appears to show a creature — which they have identified as Clarkeiteuthis montefiorei — with a herring-like fish (Dorsetichthys bechei) in its jaws.

They say the position of the arms, alongside the body of the fish, suggests this is not a fortuitous quirk of fossilization but that it is recording an actual palaeobiological event.

They also believe it dates from the Sinemurian period (between 190 and 199 million years ago), which would predate any previously recorded similar sample by more than 10 million years.

The research was led by the University of Plymouth, in conjunction with the University of Kansas and Dorset-based company, The Forge Fossils.

It has been accepted for publication in Proceedings of the Geologists’ Association and will also be presented as part of Sharing Geoscience Online, a virtual alternative to the traditional General Assembly held annually by the European Geosciences Union (EGU).

Professor Malcolm Hart, Emeritus Professor in Plymouth and the study’s lead author, said: “Since the 19th century, the Blue Lias and Charmouth Mudstone formations of the Dorset coast have provided large numbers of important body fossils that inform our knowledge of coleoid palaeontology. In many of these mudstones, specimens of palaeobiological significance have been found, especially those with the arms and hooks with which the living animals caught their prey.

“This, however, is a most unusual if not extraordinary fossil as predation events are only very occasionally found in the geological record. It points to a particularly violent attack which ultimately appears to have caused the death, and subsequent preservation, of both animals.”

In their analysis, the researchers say the fossilised remains indicate a brutal incident in which the head bones of the fish were apparently crushed by its attacker.

They also suggest two potential hypotheses for how the two animals ultimately came to be preserved together for eternity.

Firstly, they suggest that the fish was too large for its attacker or became stuck in its jaws so that the pair — already dead — settled to the seafloor where they were preserved.

Alternatively, the Clarkeiteuthis took its prey to the seafloor in a display of ‘distraction sinking’ to avoid the possibility of being attacked by another predator. However, in doing so it entered waters low in oxygen and suffocated.