Red fox on too thin ice

This 9 March 2018 video shows a red fox on too thin ice.

Theo Haarsma in the Netherlands made this video.


Red fox, badgers at sett

This 1 March 2018 video shows a red fox and two badgers at a sett.

Maybe the fox used the badger sett because of the winter cold.

Anne Westerhof in the Netherlands made this video.

Beavers on video

This is a video from the Netherlands about beavers.


Possum defends babies against monitor lizard

This BBC video, recorded in Australia, says about itself:

16 March 2018

A Lace Monitor Lizard eyes a Possum‘s nest as an easy meal but doesn’t count on the female Possum fighting tooth and claw to defend her babies.


Hispaniolan solenodon DNA sequenced

This video says about itself:

4 May 2016

Researchers from the University of Illinois and the University of Puerto Rico sequenced the DNA of Hispaniolan solenodons, revealing the mammal to be approximately 78 million years old.

From GigaScience:

Menomous [sic; Venomous] Solenodon, last survivor of a branch of mammals that appeared at the time of the dinosaurs, sequenced

March 16, 2018

Summary: An article presents a draft genome of a small shrew-like animal, the venomous Hispaniolan solenodon. This unusual animal is one of the only extant venomous mammals, and it is the sole remaining branch of mammals that split from other insectivores at the time of the dinosaurs. The solenodon genome sequence revealed the answer to several evolutionary questions, such as whether the solenodon species indeed survived the meteor impact that killed the dinosaurs.

Published today, in the open-access journal GigaScience, is an article that presents a draft genome of a small shrew-like animal, the venomous Hispaniolan solenodon (Solenodon paradoxus). This species is unusual not only because it is one of the very few venomous mammals, it is also the sole remaining branch of mammals that split from other insectivores at the time of the dinosaurs. The genome sequencing and analysis of this endangered animal was carried out by an international team lead by Dr. Taras K. Oleksyk from the University of Puerto Rico at Mayagüez. The availability of the solenodon genome sequence allowed the researchers to answer several evolutionary questions, particularly whether the solenodon species indeed survived the meteor impact that laid waste to the dinosaurs.

As one of the only extant mammals that are venomous, the Solenodon’s venomous saliva flows from modified salivary glands through grooves on their sharp incisors (“solenodon” derives from the Greek for “grooved tooth”). They also have several other primitive and very unusual characteristics for a mammal: very large claws, a flexible snout with a ball-and-socket joint, and oddly positioned teats, which are on their rear. While the mammalian tree of life has been heavily researched, this is the most distantly related branch to be added to the ‘genome club’. It has particular importance and implications for conservation because morphometric studies have suggested that southern and northern Hispaniolan solenodons may be subspecies rather than separate species.

Solenodon is not just genetically but also geographically isolated. Highly endangered, they remain only in a few remote corners of the Caribbean islands of Cuba and Hispaniola. Its nocturnal lifestyle makes it even more elusive and therefore less studied. Thus, it was crucial for the researchers to work with local experts at the Instituto Tecnológico de Santo Domingo and Universidad Autónoma de Santo Domingo and with local guides who helped them track and ambush passing solenodons at night.

One of the lead authors, Dr Juan Carlos Martinez-Cruzado, noted that “local resources are absolutely necessary for this kind of work; only they truly know their animal’s behavior.” He added, “this project may open doors to many others to come, and we always assumed this to be one of many projects that will help research, education and conservation efforts in the Dominican Republic.”

For this project, there was more than just the challenge of obtaining the organisms for blood samples, the solenodon genome proved particularly difficult to sequence. Carrying out genomics research in remote parts of the Caribbean provided a challenge, particularly in transporting high quality DNA to the lab. Due to the constraints of poor quality DNA as well as a limited budget, the commercial lab used to carry out the sequencing turned out a very low coverage per individual.

Having already ventured into the jungle, the researchers embraced this new challenge by coming up with novel approaches to assemble the genome. First, the researchers reasoned that because the species has existed for tens of millions of years in isolation, it was extremely inbred and had a very homozygous genome. This lead to a potential work-around, because the five collected sets of genomic data could be pooled to increase the coverage. Despite initial doubts, this worked better than expected especially when that strategy was combined with using a string graph approach rather than the more standard de Brujn graph assembly method. String graphs incorporate more of the sequencing data than de Brujn graphs. Based on the results here, this new technique provides a low budget alternative for genome assembly, particularly in the highly homozygous genomes of endangered species.

The first author of the paper, Kirill Grigorev elaborates: “For me, perhaps the most interesting part of this research was the challenge of delivering a de novo genome assembly that was suitable for comparative genomics, using an amount of sequencing data much smaller than in other similar projects.”

After carrying out their assembly, the researchers had data of sufficient quality for answering many scientific questions on solenodon evolution. With regard to conservation plans, the data supports that there was a subspecies split within the Hispaniolan solenodon at least 300,000 years ago, meaning the northern and southern populations should be treated as two separate conservation units and may therefore need independent breeding strategies.

These data also shed light on the initial speciation event for this branch, and showed that solenodons likely diverged from other extant mammals 73.6 million years ago. Dr. Oleksyk said: “We have confirmed the early speciation date for Solenodons, weighing on the ongoing debate on whether the solenodons have indeed survived the demise of dinosaurs after the asteroid impact in the Caribbean.”

This research was the inaugural winner of the GigaScience prize at the International Conference on Genomics in Shenzhen on the 30st October 2017. Presenting in the prize track, the international panel of judges voted the paper the winner of the $1000 prize and trophy. The GigaScience prize track will run again at ICG-13, and the journal will begin taking papers for it next month. Follow GigaScience on social media for more information.


Squirrel not welcome at American owl’s nest

This video from the USA says about itself:

Female Barred Owl Surprises Squirrel Outside the Nest Box – Mar 15, 2018

The female Barred Owl lets this squirrel know that the nest box is occupied and to stay clear!

Watch live at for information, highlights, and a link to the inside view.


Platypus milk saving human lives

This video from Australia says about itself:

Scientists discover unique protein in platypus milk that could save lives

14 March 2018

CSIRO molecular biologists working with Deakin University researchers have isolated the monotreme lactation protein structure for the first time, identifying a novel three-dimensional fold that the researchers say could lead to the creation of a new type of antibiotics.

From CSIRO Australia:

Saving lives with platypus milk

March 15, 2018

A breakthrough by Australian scientists has brought the introduction of an unlikely hero in the global fight against antibiotic resistance a step closer; the humble platypus.

Due to its unique features — duck-billed, egg-laying, beaver-tailed and venomous- the platypus has long exerted a powerful appeal to scientists, making it an important subject in the study of evolutionary biology.

In 2010 scientists discovered that platypus milk contained unique antibacterial properties that could be used to fight superbugs.

Now a team of researchers at Australia’s national research agency, the Commonwealth Scientific and Industrial Research Oganisation (CSIRO), and Deakin University have solved a puzzle that helps explain why platypus milk is so potent — bringing it one step closer to being used to save lives.

The discovery was made by replicating a special protein contained in platypus milk in a laboratory setting.

Platypus are such weird animals that it would make sense for them to have weird biochemistry”, CSIRO scientist and lead author on the research published in Structural Biology Communications, Dr Janet Newman said.

“The platypus belongs to the monotreme family, a small group of mammals that lay eggs and produce milk to feed their young. By taking a closer look at their milk, we’ve characterised a new protein that has unique antibacterial properties with the potential to save lives.”

As platypus don’t have teats, they express milk onto their belly for the young to suckle, exposing the mother’s highly nutritious milk to the environment, leaving babies susceptible to the perils of bacteria.

Deakin University’s Dr Julie Sharp said researchers believed this was why the platypus milk contained a protein with rather unusual and protective antibacterial characteristics.

“We were interested to examine the protein’s structure and characteristics to find out exactly what part of the protein was doing what”, she said.

Employing the marvels of molecular biology, the Synchrotron, and CSIRO’s state of the art Collaborative Crystallisation Centre (C3), the team successfully made the protein, then deciphered its structure to get a better look at it.

What they found was a unique, never-before-seen 3D fold.

Due to its ringlet-like formation, the researchers have dubbed the newly discovered protein fold the ‘Shirley Temple‘, in tribute to the former child-actor’s distinctive curly hair.

Dr Newman said finding the new protein fold was pretty special.

“Although we’ve identified this highly unusual protein as only existing in monotremes, this discovery increases our knowledge of protein structures in general, and will go on to inform other drug discovery work done at the Centre”, she said.

In 2014 the World Health Organisation released a report highlighting the scale of the global threat posed by antibiotic resistance, pleading for urgent action to avoid a “post-antibiotic era,” where common infections and minor injuries which have been treatable for decades can once again kill.

The scientists are seeking collaborators to take the potentially life-saving platypus research to the next stage.


Antimicrobial resistance occurs when bacteria that were once responsive to antimicrobial treatments like antibiotics build up a resistance and then pass that resistance on to their next generation. This leads to ineffective treatments and more persistent infections, caused by these resistant ‘Superbugs‘.