New spider, wasp, lizard species discoveries


This 1 July 2020 video is about a new spider species called after Joaquin Phoenix.

From the University of Turku in Finland:

New species described in 2020

July 1, 2020

It is estimated that 15 million different species live on our planet, but only 2 million of them are currently known to science. Discovering new species is important as it helps to protect them. Furthermore, new species can also produce compounds that could lead to the development of new medicine.

“Biodiversity is declining at an accelerating rate and, according to estimates, even a million organisms are in danger of becoming extinct in the next few decades. If we want to protect nature’s biodiversity as efficiently as possible, we have to discover as many species as we can,” says Professor of Biodiversity Research Ilari E. Sääksjärvi from the University of Turku, Finland.

Discovering new species enables, for example, studying their habits and defining their geographical distribution.

So far this year, the researchers of the Biodiversity Unit at the University of Turku have described 17 new spider species, 23 insects, one bristly millipede, and one monitor lizard. The new species have been discovered from the Amazon, Europe, India, the Middle East, and the Pacific islands. In addition to the species, the researchers have also described four new genera previously unknown to science.

The Amazing Beauty of Spiders

In one of the most recent studies from the Biodiversity Unit, Doctoral Candidate Alireza Zamani described a new spider species Loureedia phoenixi from Iran.

“The discovery was amazing as the new species belongs to the genus of velvet spiders, of which only few species have been known so far. They are very shy in their habits so discovering a new species was a great and welcome surprise. The species in this genus are amazingly beautiful and colourful so I wish this new discovery can make people understand the beauty and importance of spiders. We discovered the species from an area that is about 1,500 kilometres outside the known geographical distribution of the Loureedia genus,” describes Zamani.

Zamani and Sääksjärvi say that the Loureedia phoenixi spider was named after actor Joaquin Phoenix. The colourful pattern on its back resembles the face paint of the movie character Joker.

The researchers of the Biodiversity Unit have also described tropical parasitoid wasps belonging to the Acrotaphus and Hymenoepimecis genera. These wasps are parasitic on spiders and manipulate the host in complicated ways. The parasitoid wasp lays its egg on the spider and then manipulates it into spinning a special web instead of a normal web for catching prey. The wasp’s pupa nests safely inside this special web while developing into adulthood.

Species Discoveries Support Conservation Efforts

New discoveries increase our information about the history of species and can therefore affect their conservation in the future. A good example is the Varanus bennetti monitor lizard described this year, as the importance of the species’ conservation was concluded only after close field and laboratory studies.

“The monitor lizard species that was first considered an invasive species to Micronesia turned out to be two separate species native to the islands. We described one of these as new to science,” say researchers Valter Weijola and Varpu Vahtera who discovered the species.

Discovering, classifying, and describing a new species is a long process. New discoveries often require challenging field studies in remote places. Before conducting the field study, the researcher has to make sure that the required permits for collecting specimens and taking them out of the country are in order. The studies are conducted together with local scientists as often as possible.

After the field study, the other research work begins: the species is examined in a laboratory, described, named, and classified and then the research article is published in an international journal.

In the last few years, the Biodiversity Unit of the University of Turku has profiled itself especially in describing the biodiversity of unknown ecosystems. Each year, the unit describes dozens of new species which is a great amount even by international standards.

“Our goal is to discover new species and tell their story to the world. At the moment, we are in the process of describing even more new species and genera. Many of these animals live in areas that might transform or even disappear in the next few years. Describing new species to science is a race against the clock. We hope that our research draws people’s attention to the life of these unique species and thus promotes the conservation of biodiversity,” conclude Sääksjärvi and Zamani.

Colourful dinosaur age insects discovered


Diverse structural-colored insects in mid-Cretaceous amber from northern Myanmar. Credit: NIGPAS

From the Chinese Academy of Sciences, 30 June 2020:

Amber fossils unlock true color of 99-million-year-old insects

Nature is full of colors, from the radiant shine of a peacock‘s feathers or the bright warning coloration of toxic frogs to the pearl-white camouflage of polar bears.

Usually, fine structural detail necessary for the conservation of color is rarely preserved in the , making most reconstructions of the dependent upon an artist’s imagination.

A research team from the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Sciences (NIGPAS) has now unlocked the secrets of true coloration in 99-million-year-old insects.

Colors offer many clues about the behavior and ecology of animals. They function to keep organisms safe from predators, at the right temperature, or attractive to potential mates. Understanding the coloration of long-extinct animals can help us shed light on ecosystems in the deep geological past.

The study, published in Proceedings of the Royal Society B on July 1, offers a new perspective on the often overlooked, but by no means dull, lives of insects that co-existed alongside dinosaurs in Cretaceous rainforests.

Researchers gathered a treasure trove of 35 amber pieces with exquisitely preserved insects from an amber mine in northern Myanmar.

“The amber is mid-Cretaceous, approximately 99 million years old, dating back to the golden age of dinosaurs. It is essentially resin produced by ancient coniferous trees that grew in a tropical rainforest environment. Animals and plants trapped in the thick resin got preserved, some with life-like fidelity,” said Dr. Cai Chenyang, associate professor at NIGPAS who lead the study.

The rare set of amber fossils includes cuckoo wasps with metallic bluish-green, yellowish-green, purplish-blue or green on the head, thorax, abdomen, and legs. In terms of color, they are almost the same as cuckoo wasps that live today, said Dr. Cai.

The researchers also discovered blue and purple beetle specimens and a metallic dark-green soldier fly. “We have seen thousands of amber fossils but the preservation of color in these specimens is extraordinary,” said Prof. Huang Diying from NIGPAS, a co-author of the study.

“The type of color preserved in the amber fossils is called structural color. It is caused by microscopic structure of the animal’s surface. The surface nanostructure scatters light of specific wavelengths and produces very intense colors. This mechanism is responsible for many of the colors we know from our everyday lives,” explained Prof. Pan Yanhong from NIGPAS, a specialist on palaeocolor reconstruction.

To understand how and why color is preserved in some amber fossils but not in others, and whether the colors seen in fossils are the same as the ones insects paraded more than 99 million years ago, the researchers used diamond knife blades to cut through the exoskeleton of two of the colorful amber wasps and a sample of normal dull cuticle.

Using , they were able to show that colorful amber fossils have a well-preserved exoskeleton nanostructure that scatters light. The unaltered nanostructure of colored insects suggested that the colors preserved in amber may be the same as the ones displayed by them in the Cretaceous. But in fossils that do not preserve color, the cuticular structures are badly damaged, explaining their brown-black appearance.

What kind of information can we learn about the lives of ancient insects from their color?

Extant cuckoo wasps are, as their name suggests, parasites that lay their eggs into the nests of unrelated bees and wasps. Structural coloration has been shown to serve as camouflage in insects, and so it is probable that the color of Cretaceous cuckoo wasps represented an adaptation to avoid detection. “At the moment we also cannot rule out the possibility that the colors played other roles besides camouflage, such as thermoregulation,” adds Dr. Cai.

Salmon flies in the USA, video


This 24 June 2020 video from Yellowstone Park in the USA says about itself:

A Bug Undergoes One of Nature’s More Startling Transformations

The salmon fly nymph is in a race against time: in order to breathe, it will need to break out of its hardened exoskeleton and complete a fascinating metamorphosis.

Studying coral with microscopes, new method


This July 2016 video says about itself:

A new microscope mimics the human eye to study the intimate lives of coral

A new microscope gives unprecedented access to the lives of coral, from feeding to kissing, on the ocean floor.

Video Editor: Leigh Anne Tiffany

Video provided by: Jaffe Lab for Underwater Imaging, Scripps Institution for Oceanography at UC San Diego

Music: Blue Dot Sessions via Creative Commons

From the Marine Biological Laboratory in the USA:

Microscope allows gentle, continuous imaging of light-sensitive corals

June 30, 2020

Summary: Many corals are sensitive to bright light, so capturing their dynamics with traditional microscopes is a challenge. To work around their photosensitivity, researchers developed a custom light-sheet microscope (the L-SPI) that allows gentle, non-invasive observation of corals and their polyps in detail over eight continuous hours, at high resolution.

Corals are “part animal, part plant, and part rock — and difficult to figure out, despite being studied for centuries,” says Philippe Laissue of University of Essex, a Whitman Scientist at the Marine Biological Laboratory. Many corals are sensitive to bright light, so capturing their dynamics with traditional microscopes is a challenge.

To work around their photosensitivity, Laissue developed a custom light-sheet microscope (the L-SPI) that allows gentle, non-invasive observation of corals and their polyps in detail over eight continuous hours, at high resolution. He and his colleagues, including MBL Associate Scientist and coral biologist Loretta Roberson, published their findings this week in Scientific Reports.

Coral reefs, made up of millions of tiny units called polyps, are extremely important ecosystems, both for marine life and for humans. They harbor thousands of marine species, providing food and economic support for hundreds of millions of people. They also protect coasts from waves and floods, and hold great potential for pharmaceutical and biotechnological discovery.

But more than half of the world’s coral reefs are in severe decline. Climate change and other human influences are gravely threatening their survival. As ocean temperatures rise, coral bleaching is afflicting reefs worldwide. In coral bleaching, corals expel their symbiotic algae and become more susceptible to death.

“The L-SPI opens a window on the interactions and relationship between the coral host, the symbiotic algae living in their tissues, and the calcium carbonate skeleton they build in real time,” Roberson says. “We can now track the fate of the algae during [coral] bleaching as well as during initiation of the symbiosis.”

Roberson is also using Laissue’s imaging technology to measure damage to corals from “bioeroders” — biological agents like algae and sponges that break down a coral’s skeleton, a problem exacerbated by ocean acidification and increasing water temperatures.

Where Australian bees come from


This 2019 video is called Native Australian Homalictus Bee.

From Flinders University in Australia:

Native bees’ exotic origins reveal cross-pollination

June 30, 2020

Ancestors of a distinctive pollinating bee found across Australia probably originated in tropical Asian countries, islands in the south-west Pacific or greater Oceania region, ecology researchers claim.

Describing the likely dispersal corridor for the ancestral lineage of the bee genus Homalictus will help understand the social evolution of the vibrant halictine bees, South Australian, Czech and PNG researchers say in a new paper.

It follows earlier research connecting the origin of other Australian bees to the polar south or Antarctica routes millions of years ago — helping to explain the diversity and complexity of natural ecosystems and their resilience or susceptibility during periods of climate change.

Ecologists are hopeful that the diverse origins of native bees are giving them an edge in withstanding and adapting further to climate change.

“Homalictus bees are a leading generalist plant-pollinator across Australia and as far north as southern China,” says Flinders University PhD candidate, photographer and native bee expert James Dorey.

“Our study highlights the importance of the habitat and ecology of tropical regions, including Papua New Guinea and the Fijian islands, for our endemic species and shows us how these bees might have expanded across the Pacific and possibly higher latitudes of Southeast Asia.”

SA Museum senior researcher Associate Professor Mark Stevens says the ongoing research aims to better understand the origin and radiation of insects and other animals, help environmental management during changing climates and mitigate the effects of further human expansion and habitat destruction.

“Many species historically evolved under different climatic conditions and those different histories may determine how they will cope with new climates,” he says.

“As climates change, species that have narrow thermal tolerances that are unable to adapt either track their preferred climate by moving, or become extinct. We see this in our studies on tropical bees and also in the studies of Antarctic biodiversity.”

“What has not been fully appreciated is the movement of bees in the southern hemisphere that included Antarctica as a likely dispersal corridor before it became the glacial continent that it is today.”

Antarctica was the crossroads between South America, Africa and Australia as the supercontinent of Gondwana was breaking up. The last landmass connections between Australia and Antarctica finished about 35 million years ago while the interchange with Asia began about 20 million years ago.

In contrast to the colourful tropical varieties, SA researchers have previously explored the origins of the cooler adapted and less colourful Exoneurine allodapine bees, believed to have originated in Africa but dispersed to Australia about 42-34 million years ago from Antarctica when there was still a land bridge connection to Tasmania.

Co-author on the online Homalictus paper, Associate Professor Mike Schwarz says Australia has the most unusual bee fauna in the world, resulting from three major events — the gradual breakup of Gondwana, then a period when the bees evolved in “splendid isolation,” long before humans arrived.

“Thirdly, there was a northern influx of species from tropical Asia as the Australian continent collided with Asia. “Australia’s complex systems diversity if a key ingredient for survival of our species,” Flinders Associate Professor Schwarz says.

“Hopefully, the diversity of our native bees will make them more resilient to future climate scenarios, which will be critical for agriculture in a changing world.

Corals discovered off Greenland


This 29 June 2020 video says about itself:

Captioned video showing and describing a new soft coral garden habitat discovered deep off the coast of Greenland.

From University College London in England:

Soft coral garden discovered in Greenland’s deep sea

June 29, 2020

A deep-sea soft coral garden habitat has been discovered in Greenlandic waters by scientists from UCL, ZSL and Greenland Institute of Natural Resources, using an innovative and low-cost deep-sea video camera built and deployed by the team.

The soft coral garden, presented in a new Frontiers in Marine Science paper, is the first habitat of this kind to have been identified and assessed in west Greenland waters.

The study has direct implications for the management of economically important deep-sea trawl fisheries, which are immediately adjacent to the habitat. The researchers hope that a 486 km2 area will be recognised as a ‘Vulnerable Marine Ecosystem’ under UN guidelines, to ensure that it is protected.

PhD researcher Stephen Long (UCL Geography and ZSL (Zoological Society London)), first author on the study, said: “The deep sea is often over-looked in terms of exploration. In fact, we have better maps of the surface of Mars, than we do of the deep sea.

“The development of a low-cost tool that can withstand deep-sea environments opens up new possibilities for our understanding and management of marine ecosystems. We’ll be working with the Greenland government and fishing industry to ensure this fragile, complex and beautiful habitat is protected.”

The soft coral garden discovered by the team exists in near-total darkness, 500m below the surface at a pressure 50 times greater than at sea-level. This delicate and diverse habitat features abundant cauliflower corals as well as feather stars, sponges, anemones, brittle stars, hydrozoans, bryozoans and other organisms.

Dr Chris Yesson (ZSL), last author on the study, said “Coral gardens are characterised by collections of one or more species (typically of non-reef forming coral), that sit on a wide range of hard and soft bottom habitats, from rock to sand, and support a diversity of fauna. There is considerable diversity among coral garden communities, which have previously been observed in areas such as northwest and southeast Iceland.”

The discovery is particularly significant given that the deep sea is the most poorly known habitat on earth, despite being the biggest and covering 65% of the planet. Until very recently, very little was known about Greenland’s deep-sea habitats, their nature, distribution and how they are impacted by human activities.

Surveying the deep sea has typically proved difficult and expensive. One major factor is that ocean pressure increases by one atmosphere (which is the average atmospheric pressure at sea level) every 10 metres of descent. Deep-sea surveys, therefore, have often only been possible using expensive remote operating vehicles and manned submersibles, like those seen in Blue Planet, which can withstand deep-sea pressure.

The UK-Greenland research team overcame this challenge by developing a low-cost towed video sled, which uses a GoPro video camera, lights and lasers in special pressure housings, mounted on a steel frame.

The lasers, which were used to add a sense of scale to the imagery, were made by combining high-powered laser pointers with DIY housings made at UCL’s Institute of Making, with help from UCL Mechanical Engineering.

The team placed the video sledge — which is about the size of a Mini Cooper — on the seafloor for roughly 15 minutes at a time and across 18 different stations. Stills were taken from the video footage, with 1,239 images extracted for further analysis.

A total of 44,035 annotations of the selected fauna were made. The most abundant were anemones (15,531) and cauliflower corals (11,633), with cauliflower corals observed at a maximum density of 9.36 corals per square metre.

Long said: “A towed video sled is not unique. However, our research is certainly the first example of a low-cost DIY video sled led being used to explore deep-sea habitats in Greenland’s 2.2million km² of sea. So far, the team has managed to reach an impressive depth of 1,500m. It has worked remarkably well and led to interest from researchers in other parts of the world.”

Dr Yesson added: “Given that the ocean is the biggest habitat on earth and the one about which we know the least, we think it is critically important to develop cheap, accessible research tools. These tools can then be used to explore, describe and crucially inform management of these deep-sea resources.”

Dr Martin Blicher (Greenland Institute of Natural Resources) said: “Greenland’s seafloor is virtually unexplored, although we know is it inhabited by more than 2000 different species together contributing to complex and diverse habitats, and to the functioning of the marine ecosystem. Despite knowing so little about these seafloor habitats, the Greenlandic economy depends on a small number of fisheries which trawl the seabed. We hope that studies like this will increase our understanding of ecological relationships, and contribute to sustainable fisheries management.”