A hundred million crabs migrating


This video says about itself:

One Hundred Million Crabs – The Trials of Life – BBC Earth

16 October 2017

On Christmas Island, red crabs migrate en masse.

Advertisements

Dragonfly eats scale insect, video


This September 2017 video shows a male brown hawker dragonfly eating a scale insect.

Hennie Tholen made this video in a backyard in the Netherlands.

Dung beetle rolls dung ball


This 12 October 2017 video shows a dung beetle rolling a dung ball to its nest. There, the female will lay an egg in the ball. When the larva will hatch from the egg, the dung will be its food. Everdien van der Bijl made this video on the Ginkelse heide nature reserve near Ede town in the Netherlands.

Cambrian animal discovery in Utah, USA


This video says about itself:

20 June 2014

In this episode of Palaeo After Dark, the group talks about an interesting and enigmatic fossil species from the Burgess Shale called Siphusauctum gregarium, which looks somewhat like a crinoid but is possibly completely unrelated. The group also gets sidetracked into conversations about echinoderms, the importance of the Burgess Shale, and shipping grandfather clocks on the Oregon Trail.

From the University of Kansas in the USA:

Obscure’ stalked filter feeder lived in Utah some 500 million years ago

October 11, 2017

Summary: The only fossilized specimen of a species previously unknown to science — an ‘obscure’ stalked filter feeder — has just been detailed for the first time.

To the untrained eye, it looks like a flower crudely etched into rock — as if a child had scratched a picture of a bloom. But to the late fossil hunter Lloyd Gunther, the tulip shape he unearthed at Antimony Canyon in northern Utah looked like the remnant of an ancient marine animal.

Years ago, Gunther collected the rock and later gave it to researchers at the University of Kansas’ Biodiversity Institute — just one among thousands of such fossils he donated to the institute over the years.

But this find was the only fossilized specimen of a species previously unknown to science — an “obscure” stalked filter feeder. It has just been detailed for the first time in a paper appearing in the Journal of Paleontology.

“This was the earliest specimen of a stalked filter feeder that has been found in North America,” said lead author Julien Kimmig, collections manager for Invertebrate Paleontology at the Biodiversity Institute. “This animal lived in soft sediment and anchored into the sediment. The upper part of the tulip was the organism itself. It had a stem attached to the ground and an upper part, called the calyx, that had everything from the digestive tract to the feeding mechanism. It was fairly primitive and weird.”

Kimmig researches the taxonomy, stratigraphy and paleoecology of the Cambrian Spence Shale found in Utah and Idaho, where Gunther found the obscure filter feeder.

“The Spence Shale gives us soft-tissue preservation, so we get a much more complete biota in these environments,” he said. “This gives us a better idea of what the early world was like in the Cambrian. It’s amazing to see what groups of animals had already appeared over 500 million years ago, like arthropods, worms, the first vertebrate animals — nearly every animal that we have around today has a relative that already lived during those times in the Cambrian.”

In honor of fossil hunter Gunther, a preeminent collector who performed fieldwork from the 1930s to the 2000s, Kimmig and Biodiversity Institute colleagues Luke Strotz and Bruce Lieberman named the newly described species Siphusauctum lloydguntheri.

The stalked filter feeder is just the second animal placed within its genus, and the first Siphusauctum to be discovered outside the Burgess Shale, a fossil-rich deposit in the Canadian Rockies.

“What these animals were doing was filtering water to get food, like micro-plankton,” Kimmig said. “The thing is, where this one was located we only found a single specimen over a period of 60 years of collecting in the area.”

Kimmig said it isn’t yet known if the newly discovered stalked filter feeder lived a highly solitary life or if it drifted off from a community of similar animals.

“It’s hard to tell from a single specimen,” he said. “There were algae found right next to it, so it likely was transported there. The algae found with it were planktonic algae that were floating themselves. It could have fallen just next to it — but that would be a big coincidence — so that’s why we’re thinking it came loose from somewhere else and got mixed in with the algae.”

Kimmig and his KU colleagues say the newly described specimen varies in key areas from similar known species of stalked filter feeders from the Cambrian.

“There are several differences in how the animal looked,” Kimmig said. “If you look at the digestive tract preserved in this specimen, the lower digestive tract is closer to the base of the animal compared to other animals. The calyx is very slim — it looks like a white wine glass, whereas in other species it looks like a big goblet. What we don’t have in this specimen that the others have are big branches for filter feeding. We don’t know if those weren’t preserved or if this one didn’t have them.”

According to the researchers, there are no species alive today that claim lineage to Siphusauctum lloydguntheri. But Kimmig said there were a few contemporary examples that share similarities.

“The closest thing to the lifestyle — but not a relative — would be crinoids, commonly called sea lilies,” he said. “Unfortunately, there’s likely not a relative of Siphusauctum in the world anymore. We have thousands of similar fossil specimens in the Burgess Shale, but it’s hard to identify what these animals actually were. It might be possibly related to contemporary entoprocts, which are a lot smaller than this one — but it’s hard to tell if they’re related at all.”

Ultimately, the mysterious stalked filter feeder is a reminder of the strange and vast arc of evolution where species continuously come and go, according to Kimmig.

“It is enigmatic because we don’t have anything living that is exactly like it,” he said. “What is fascinating about this animal is we can clearly relate it to animals existing in the Cambrian and then we just don’t find it anymore. It’s just fascinating to see how evolution works. Sometimes it creates something — and it just doesn’t work out. We have some lineages like worms that lived long before the Cambrian and haven’t changed in appearance or behavior, then we have things that were around for a couple of million years and just disappeared because they were chance victims of mass extinctions.”

Hornets, red admiral butterflies drink birch tree juice


This 5 October 2017 video shows hornets and red admiral butterflies drinking juice from an injured birch tree.

Karl Hammer made this video near Zundert town in North Brabant province in the Netherlands.

Luminiscent jellyfish video


This video says about itself:

Strange Jellyfish Glowing in the Ocean Deep – The Trials of Life – BBC Earth

6 October 2017

In the blackness of the ocean depths is an extraordinary light show.

Lord Howe Island stick insects survive near-extinction


This July 2015 video says about itself:

Rarest bug in the world! Until recently the Lord Howe Island stick insect was thought to be extinct. Ben will take you on a journey to see the renewal of the rarest bug in the world and how they saved this insect. These bugs are very special!

From ScienceDaily:

Once declared extinct, Lord Howe Island stick insects really do live

October 5, 2017

Summary: Lord Howe Island stick insects were once numerous on the tiny crescent-shaped island off the coast of Australia for which they are named. Now, biologists who have analyzed the DNA of living and dead Lord Howe Island stick insects have some good news: those rediscovered on Ball’s Pyramid, which are now being bred at the Melbourne Zoo and elsewhere, really are Lord Howe Island stick insects.

Lord Howe Island stick insects were once numerous on the tiny crescent-shaped island off the coast of Australia for which they are named. The insects, which can measure up to 6 inches in length, don’t resemble sticks so much as tree lobsters, as they are also known. After ships accidentally introduced rats to the island about a century ago, the Lord Howe Island stick insects quickly disappeared. They were later declared extinct, only to be found again decades later living on Ball’s Pyramid, a sheer volcanic stack about 12 miles away. But those newfound insects didn’t look quite the same as older museum specimens, raising doubts about the nature of their true identity.

Now, researchers reporting in Current Biology on October 5 who have analyzed the DNA of living and dead Lord Howe Island stick insects have some good news: those rediscovered on Ball’s Pyramid, which are now being bred at the Melbourne Zoo and elsewhere, really are Lord Howe Island stick insects. The findings greatly increase the likelihood that the insect’s re-introduction on Lord Howe Island could be done successfully, the researchers say.

“We found what everyone hoped to find — that despite some significant morphological differences, these are indeed the same species”, says Alexander Mikheyev at the Okinawa Institute of Science and Technology in Japan.

Using DNA sequence data from the Ball’s Pyramid population, the researchers assembled a draft genome of the captive bred insects along with their complete mitochondrial genome. The effort revealed a massive genome, which appears to have been duplicated more than once to contain six copies of each chromosome.

The researchers also re-sequenced mitochondrial genomes from historic museum specimens collected on Lord Howe Island before the extinction event. Comparisons between living and dead insects found a divergence of less than one percent — well within the range of differences expected within a species. The findings suggest that the rediscovered populations are indeed Lord Howe Island stick insects. Dryococelus australis really has evaded extinction so far.

The work highlights the importance of museum collections for taxonomic validation in the context of ongoing conservation efforts, the researchers say. The findings come just as the Lord Howe Island community has backed a plan to drop poisoned grain on the island in hopes of eradicating the rats. If successful, the next chapter of the Lord Howe Island stick insect’s story will take place on its ancestral island.

“The Lord Howe Island stick insect has become emblematic of the fragility of island ecosystems,” Mikheyev says. “Unlike most stories involving extinction, this one gives us a unique second chance.”