Ancient bird Archaeopteryx and Donald Trump


This video says about itself:

23 May 2014

In 1860 in Germany, an unusual fossil was found that shocked the world. It seemed to be a strange combination of a dinosaur and a bird. It was the 150 million-year-old fossil of Archaeopteryx. The skeleton looked like a normal two-legged meat-eating dinosaur, but it had one very special feature: feathers. Its feathers are how it got its name, which means “ancient wing”.

By Peter Frost in Britain:

Archaeopteryx takes to the skies

Friday 24th March 2017

The fossil which proved the evolutionary link between dinosaurs and birds is on tour. PETER FROST explains why this scientific discovery is still relevant today

CHARLES DARWIN published his earth-shattering book On the Origin of Species in 1859. The book outlined the theory of evolution that is still, despite its compelling evidence, being argued about today, especially in the United States bible belt and even in President Donald Trump’s White House.

Part of Darwin’s argument predicted finding fossil evidence for the transitional stage between dinosaurs and what would become birds. At the time of his writing, Darwin predicted that evidence would be uncovered to prove his theory. Critics scoffed and noted the absence of any fossil evidence.

Then in 1861, just two years after his book was published, the fossil of a single feather was uncovered in the limestone layers of Solnhofen in Bavaria, southern Germany. It was clear evidence for the transitional fossil between dinosaurs and birds that Darwin had predicted. The great scientist was vindicated, to the dismay of his critics.

That same year more proof arrived when the first complete specimen of Archaeopteryx was discovered. That first skeleton, later to be known as “the London specimen,” was unearthed near Langenaltheim, Germany. It finally proved the link between dinosaurs and birds.

The fossil was given to local physician Karl Haberlein in return for medical services. Over the years, ten more fossils of Archaeopteryx have surfaced all in the same limestone layers of Solnhofen.

These fossil archaeopteryx have since become key evidence for the origin of birds, the transitional fossils debate and the confirmation of evolution.

The original German fossil was purchased by Britain in 1863 for £700 and was kept initially at the British Museum. When the Natural History Museum opened in South Kensington in 1881, the fossil became one of its most important exhibits.

Until this year it had never left the museum, but since March 18 it has been the star exhibit in a travelling exhibition at the National Museum of Nature and Science in Tokyo.

At first glance the fossil might seem to be just a ragtag assortment of bones, but on closer inspection you can understand why Archaeopteryx is so interesting and important.

Today, the thin limestone slabs that contain the bones of this pivotal creature are considered priceless. If one ever came to auction it would sell for millions of pounds.

The delicate stone has been carefully reinforced using a strong plastic resin but is still incredibly delicate. Museums officials are satisfied the iconic fossil will come to no harm in transit or during its time on display in Japan.

The Archaeopteryx fossil has beautiful impressions of feathers and wings — like a bird. But then it also displays the claws, the long bony tail and the serrated teeth more normally associated with dinosaurs.

Archaeopteryx was roughly the size of a small chicken, with broad wings that were rounded at the ends and a long tail compared to its body length.

Its feathers were very similar in structure to modern-day bird feathers. Unlike modern birds, Archaeopteryx had small teeth as well as a long bony tail, features which the species shared with other dinosaurs of the time.

Directors of modern dinosaur films may have used their computers to make Archaeopteryx into a soaring elegant flyer — something like a giant condor. In reality, it was probably an ungainly beast capable only of flapping flight from one low shrub to another.

In a world where more and more fundamentalist religious views are arguing against the science of evolution, it is important that the convincing evidence of fossils is made as widely known as possible.

President Trump and Vice-President Mike Pence were asked for their thoughts on evolution and Darwin. Pence told Congress he believed in teaching creationism in schools to balance out the theory of evolution.

In answer to a journalists question, he replied: “Do I believe in evolution? I embrace the view that God created the heavens and the Earth, the seas and all that’s in them.”

Pence wants the biblical story of creation taught in biology class alongside evolution.

With backwoodsman Trump as president, it will certainly happen.

Sadly the pair of them are in good company as many people in the United States agree with them.

While the majority of people in Europe and in many other parts of the world accept evolution, the United States lags behind.

Today, four in every 10 adults in the US believe that humans have existed in our present form since the beginning of time. In many religious groups, that number is even higher.

Perhaps then it is good news that the remarkable Archaeopteryx fossil is making the journey to Tokyo as just one of 300 exhibits from the collection of London’s Natural History Museum.

The travelling exhibition features all sorts of objects, including many animals that inspired Darwin directly and demonstrate the truth of evolution.

The artefacts range from a lion from the royal menagerie to an exquisite glass model of an octopus. All have a fascinating science backstory.

“Science is a global endeavour fuelled by wonder and curiosity. So it has been an ambition for us to share these extraordinary treasures with a wider audience,” Natural History Museum director Sir Michael Dixon told us.

“They are the essence of the scientific exploration that inspired pioneers and continues today at the Natural History Museum.”

Other destinations for this exciting touring exhibition beyond Japan will be announced in due course, but I doubt they will be welcome in Trump and Pence’s Washington.

Dinosaur family tree, new theory


Dinosaur family trees, K. Padian/Nature 2017

From Science News:

Anatomy analysis suggests new dinosaur family tree

Proposal would radically alter century-old groupings

By Rachel Ehrenberg

2:06pm, March 22, 2017

Relative rethink

Scientists have long-divided the dinosaurs into two main groups, the bird-hipped and the reptile-hipped (top). A new analysis breaks up the reptile-hipped lineage and suggests the bird-hipped group shares recent ancestors with meat-eating theropods (bottom). Scientists have been unsure where to put the confusing two-legged, meat-eating herrerasaurids (red lines, top). The new analysis suggests they are close relatives of the sauropods (bottom).

The standard dinosaur family tree may soon be just a relic.

After examining more than 400 anatomical traits, scientists have proposed a radical reshuffling of the major dinosaur groups. The rewrite, reported in the March 23 Nature, upsets century-old ideas about dinosaur evolution. It lends support to the accepted idea that the earliest dinosaurs were smallish, two-legged creatures. But contrary to current thinking, the new tree suggests that these early dinosaurs had grasping hands and were omnivores, snapping up meat and plant matter alike.

“This is a novel proposal and a really interesting hypothesis,” says Randall Irmis, a paleontologist at the Natural History Museum of Utah and the University of Utah in Salt Lake City. Irmis, who was not involved with the work, says it’s “a possibility” that the new family tree reflects actual dinosaur relationships. But, he says, “It goes against our ideas of the general relationships of dinosaurs. It’s certainly going to generate a lot of discussion.”

The accepted tree of dinosaur relationships has three dominant branches, each containing critters familiar even to the non–dinosaur obsessed. One branch leads to the “bird-hipped” ornithischians, which include the plant-eating duckbills, stegosaurs and Triceratops and its bony-frilled kin. Another branch contains the “reptile-hipped” saurischians, which are further divided into two groups: the plant-eating sauropods (typically four-legged, like Brontosaurus) and the meat-eating theropods (typically two-legged, like Tyrannosaurus rex and modern birds).

This split between the bird-hipped and reptile-hipped dinos was first proposed in 1887 by British paleontologist Harry Seeley, who had noticed the two strikingly different kinds of pelvic anatomy. That hypothesis of dinosaur relationships was formalized and strengthened in the 1980s and has been accepted since then.

The new tree yields four groups atop two main branches. The bird-hipped ornithischians, which used to live on their own lone branch, now share a main branch with the reptile-hipped theropods like T. rex. This placement suggests these once-distant cousins are actually closely related. It also underscores existing questions about the bird-hipped dinos, an oddball group with murky origins; they appear late in the dinosaur fossil record and then are everywhere. Some scientists have suggested that they evolved from an existing group of dinosaurs, perhaps similarly herbivorous sauropods. But by placing the bird-hipped dinos next to the theropods, the tree hints that the late-to-the-party vegetarian weirdos could have evolved from their now close relatives, the meat-eating theropods.

Sauropods (like Brontosaurus) are no longer next to the theropods but now reside on a branch with the meat-eating herrerasaurids. Herrerasaurids are a confusing group of creatures that some scientists think belong near the other meat eaters, the theropods, while others say the herrerasaurids are not quite dinosaurs at all.

The new hypothesis of relationships came about when researchers led by Matthew Baron, a paleontologist at the University of Cambridge and Natural History Museum in London, decided to do a wholesale examination of dinosaur anatomy with fresh eyes. Using a mix of fossils, photographs and descriptions from the scientific literature, Baron and colleagues surveyed the anatomy of more than 70 different dinosaurs and non-dino close relatives, examining 457 anatomical features. The presence, absence and types of features, which include the shape of a hole on the snout, a cheekbone ridge and braincase anatomy, were fed into a computer program, generating a family tree that groups animals that share specialized features.

In this new interpretation of dinosaur anatomy and the resulting tree, many of the earliest dinosaurs have grasping hands and a mix of meat-eating and plant-eating teeth. If the earliest dinos were really omnivores, given the relationships in the new four-pronged tree, the evolution of specialized diets (vegetarians and meat eaters) each happened twice in the dinosaur lineage.

When the researchers saw the resulting tree, “We were very surprised — and cautious,” Baron says. “It’s a big change that flies in the face of 130 years of thinking.”

The arrangement of the new tree stuck even when the researchers fiddled around with their descriptions of various features, Baron says. The close relationship between the bird-hipped, plant-eating ornithischians and the reptile-hipped, meat-eating theropods, for example, isn’t based on one or two distinctive traits but on 21 small details.

“The lesson is that dinosaur groups aren’t characterized by radical new inventions,” says paleontologist Kevin Padian of the University of California, Berkeley. “The relationships are read in the minutiae, not big horns and frills.” That said, Padian, whose assessment of the research also appears in Nature, isn’t certain that the new tree reflects reality. Such trees are constructed based on how scientists interpret particular anatomical features, decisions that will surely be quibbled with. “The devil is in the details,” Padian says. “These guys have done their homework and now everyone’s going to have to roll up their sleeves and start checking their work.”

Ancient crustacean fossil named after David Attenborough


This 21 March 2017 video from England is called Cascolus ravitis, a 430 Million-Year-Old ‘Exceptionally Preserved’ Fossil.

From the University of Leicester in England:

430 million-year-old fossil named in honor of Sir David Attenborough

Ancient relative of the lobsters and crabs complete with soft-parts is new to science

March 22, 2017

Summary: A new 430 million-year-old fossil has been discovered by scientists, and has been named in honor of Sir David Attenborough. The discovery is a unique example of its kind in the fossil record, say the authors of a new report.

An international team of scientists led by the University of Leicester has discovered a new 430 million-year-old fossil and has named it in honour of Sir David Attenborough — who grew up on the University campus.

The fossil is described as ‘exceptionally well preserved in three-dimensions’ — complete with the soft-parts of the animal, such as legs, eyes and very delicate antennae. The fossil has been determined as an ancient crustacean new to science — a distant relative of the living lobsters, shrimps and crabs. There are about 40,000 crustacean species known today.

The find comes from volcanic ash deposits that accumulated in a marine setting in what is now Herefordshire in the Welsh Borderland.

Professor David Siveter of the Department of Geology at the University of Leicester made the discovery working alongside researchers from the Universities of Oxford, Imperial College London and Yale, USA.

Professor Siveter said: “Such a well-preserved fossil is exciting, and this particular one is a unique example of its kind in the fossil record, and so we can establish it as a new species of a new genus.”

“Even though it is relatively small, at just nine millimetres long, it preserves incredible detail including body parts that are normally not fossilized. It provides scientists with important, novel insights into the evolution of the body plan, the limbs and possible respiratory-circulatory physiology of a primitive member of one of the major groups of Crustacea.”

The fossil is named Cascolus ravitis in honour of Sir David, who grew up on University College Leicester campus (the forerunner of the University), in celebration of his 90th birthday. Cascolus is derived from castrum meaning ‘stronghold’ and colus, ‘dwelling in’, alluding to the Old English source for the surname Attenborough; while ‘ravitis” is a combination of Ratae — the Roman name for Leicester — ‘vita’, life, and ‘commeatis’, a messenger.

Professor Siveter said: “In my youth, David Attenborough‘s early programmes on the BBC, such as ‘Zoo Quest‘, greatly encouraged my interest in Natural History and it is a pleasure to honour him in this way.”

Sir David Attenborough said: “The biggest compliment that a biologist or palaeontologist can pay to another one is to name a fossil in his honour and I take this as a very great compliment. I was once a scientist so I’m very honoured and flattered that the Professor should say such nice things about me now.”

Professor Siveter added: “The animal lived in the Silurian period of geological time. Some 430 million years ago much of southern Britain was positioned in warm southerly subtropical latitudes, quite close to a large ancient continent of what we now call North America, and was covered by a shallow sea. The crustacean and other animals living there died and were preserved when a fine volcanic ash rained down upon them.”

The fossil specimen has been reconstructed as a virtual fossil by 3D computer modeling.

New frog from the Peruvian Andes is the first amphibian named after Sir David Attenborough: here.

Feathered dinosaurs, new research


This video says about itself:

29 July 2015

“Anchiornis” is a genus of small, feathered, eumaniraptoran dinosaurs. The genus “Anchiornis” contains only the type species “Anchiornis huxleyi“. It was named in honor of Thomas Henry Huxley, an early proponent of biological evolution, and the first to propose a close evolutionary relationship between birds and dinosaurs. The generic name “Anchiornis” means “near bird”, and its describers cited it as important in filling a gap in the transition between the body plans of birds and dinosaurs.

“Anchiornis huxleyi” fossils have been found in the Tiaojishan Formation of Liaoning, China, in rocks dated to the late Jurassic period, 161.0–160.5 million years ago.

Given the exquisite preservation of one of the animal’s fossils, “Anchiornis huxleyi” became the first dinosaur species for which almost the entire life coloration could be determined.

“Anchiornis huxleyi” was a small, paravian dinosaur with a triangular skull bearing several details in common with dromaeosaurids and troodontids. “Anchiornis” had very long legs, usually an indication that they were strong runners. However, the extensive leg feathers indicate that this may be a vestigial trait, as running animals tend to have reduced, not increased, hair or feathers on their legs. The forelimbs of “Anchiornis” were also very long, similar to archaeopterygids.

The first fossil was recovered from the Yaolugou locality, Jianchang County, western Liaoning, China; the second, at the Daxishan locality of the same area. The deposits are lake sediment, and are of uncertain age. Radiological measurements indicate an early Late Jurassic age for them, between 161 and 151 million years ago.

From Science News:

Under lasers, a feathered dino shows some skin

Geochemical fluorescence method illuminates Anchiornis soft tissue, but some remain skeptical

By Helen Thompson

2:40pm, March 20, 2017

What happens when you shoot lasers at a dinosaur fossil? Some chemicals preserved in the fossil glow, providing a nuanced portrait of the ancient creature’s bones, feathers and soft tissue such as skin.

Soft tissue is rarely preserved in fossils, and when it is, it can be easily obscured. A technique called laser-stimulated fluorescence “excites the few skin atoms left in the matrix, making them glow to reveal what the shape of the dinosaur actually looked like,” says Michael Pittman, a paleontologist at the University of Hong Kong.

Pittman and colleagues turned their lasers on Anchiornis, a four-winged dinosaur about the size of a pigeon with feathered arms and legs. It lived around 160 million years ago during the Jurassic Period. The researchers imaged nine specimens under laser light and used the photos to reconstruct a model of Anchiornis that shows an exceedingly birdlike body, the team writes March 1 in Nature Communications.

In the crooks of its elbows and wrists, the dinosaur had what looks like taut tissues called patagia, a feature in modern bird wings. “The wings of Anchiornis are reminiscent of the wings of some living gliding and soaring birds,” Pittman says. Plus, the images capture minute details like feather follicles and scales, and confirm some characteristics of Anchiornis long surmised by scientists: that it had drumstick-shaped legs, pads on the balls of its feet and a slim tail.

Still, it’s unclear what geochemicals are actually fluorescing in the fossils because the team didn’t perform any chemical analyses to determine the organic compounds or minerals present. “The images are very cool,” says Mary Schweitzer, a paleontologist at North Carolina State University in Raleigh. But, she cautions, a few hurdles remain, including testing fluorescence in different fossil types and verifying how skin glows under laser light in modern bird fossils.

Scientists normally rely on light-based methods and skeletal data to reconstruct the appearance of dinosaurs and other ancient creatures. Ultraviolet fluorescence works similarly to the new method, but the laser technique captures greater resolution. If laser-stimulated fluorescence lives up to its promise, it could help discern fossilized features that are invisible to the naked eye.

Functional form

Drawing from Anchiornis fossil specimens housed in a Chinese museum, researchers used measurements from laser-stimulated fluorescence images to create a more refined outline of the dinosaur’s body.

Dinosaur age fungi discovery


This video says about itself:

23 February 2016

Here are 10 extraordinary fossils that have been found preserved in amber. Amber certainly makes beautiful jewelry, but its clarity and longevity have also proven it to be a great preservation medium. Here are 10 extraordinary fossils that have been found in the solidified resin.

Number 10. Ancient hierarchical civilizations. Thanks to some well-preserved remains, researchers now believe arthropod social structures have been around longer than anyone ever imagined. The encased specimens of ants and termites recently studied date back roughly 100 million years.

Number 9. A possible early version of the bubonic plague. The disease is well known as a Middle Ages mass killer, and its power may have been building since before the dawn of man. Traces of very similar bacteria were found on a 20-million-year-old flea trapped in amber.

Number 8. First carnivorous plant. Dating back some 40 million years, the specimen, which has gooey, insect-trapping tentacles shooting off of its leaves, still contains traces of its last meal. The fossil was found in what is now Russia.

Number 7. 52-million-year-old parasitic beetle. The creature’s prey of choice was ants, and it was somehow able to dupe the hard workers into letting it live in their nest. While there, the beetle would likely eat the ants’ young and exploit their resources.

Number 6. Elusive male stinging scorpion. There are many holes in the history and development of the Miocene scorpion, as very few remains of the ancient ones have been found. Except for this one, a very rare, fully-grown male discovered in Mexico.

Number 5. A daddy long legs with an erect penis. With a 400-million-year history of existence, that the arachnids mate isn’t surprising. However this particular one, estimated to be about 99 million, is the oldest known to have been preserved in such a state.

Number 4. A flower on the verge of being fertilized. Had it not been for the flow of resin that engulfed this bud 100 million or so years ago, the bloom likely would have spread viable seed far and wide. Instead, it was fossilized right as pollen tubes were about to make contact with flower’s stigma.

Number 3. A spider on the brink of an attack. This roughly 110-million-year-old, 8-legged predator missed out on getting a last meal by a sliver of time. The would-be nibble was a wasp that had become ensnared in the web.

Number 2. Dinosaur feathers. Many experts have suggested the prehistoric beasts were covered in them, and this particular piece of amber certainly lends support to the idea. It was discovered in Canada and created some 78 million years ago.

Number 1. Ancient Caribbean lizards. Even though they are 20 million years old, the reptiles inside the golden stones were not found to differ from their contemporary counterparts in any significant way. Scientists attribute the rarity to stable ecological surroundings.

Which amber-encased fossil do you find most fascinating?

From Xinhua news agency in China:

Scientists find earliest intact mushroom fossils

NANJING, March 17 — Paleontologists from China, New Zealand and the United States have found four intact mushroom fossils, sources with the Chinese Academy of Sciences said Friday.

The four, well preserved in Burmese amber for at least 99 million years, are the earliest complete mushroom fossils ever found.

The findings represent four species of mushroom. A stalk and a complete cap containing distinct gills are visible in most of the mushrooms, which are two to three millimeters long.

The research team led by Prof. Huang Diying from Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, reported the finding after researching more than 20,000 pieces of Burmese amber collected over 10 years.

The team also found three kinds of rove beetle, which feed on mushrooms, in pieces of amber 125 million years old. The discovery highlights the palaeo-diversity of mushrooms, pushing back the presence of agaric mushrooms by at least 25 million years.

Mushrooms are common and morphologically diverse fungi. Their bodies are soft and ephemeral and therefore extremely rare in fossils. Until the recent discovery, only five species of mushrooms were known exclusively from amber. Among the previous five species, one was found in a 99-million-year-old piece of damaged Burmese amber, another in a 90-million-year-old piece of New Jersey amber and the three remaining species in 20-million-year-old Dominican amber.

World’s oldest fossils discovery in Canada


This video says about itself:

2 March 2017

Remains of microorganisms at least 3,770 million years old have been discovered by an international team led by UCL scientists, providing direct evidence of one of the oldest life forms on Earth.

Tiny filaments and tubes formed by bacteria that lived on iron were found encased in quartz layers in the Nuvvuagittuq Supracrustal Belt (NSB), Quebec, Canada.

From University College London in England:

World’s oldest fossils unearthed

March 1, 2017

Remains of microorganisms at least 3,770 million years old have been discovered by an international team led by UCL scientists, providing direct evidence of one of the oldest life forms on Earth.

Tiny filaments and tubes formed by bacteria that lived on iron were found encased in quartz layers in the Nuvvuagittuq Supracrustal Belt (NSB), Quebec, Canada.

The NSB contains some of the oldest sedimentary rocks known on Earth which likely formed part of an iron-rich deep-sea hydrothermal vent system that provided a habitat for Earth’s first life forms between 3,770 and 4,300 million years ago. “Our discovery supports the idea that life emerged from hot, seafloor vents shortly after planet Earth formed. This speedy appearance of life on Earth fits with other evidence of recently discovered 3,700 million year old sedimentary mounds that were shaped by microorganisms,” explained first author, PhD student Matthew Dodd (UCL Earth Sciences and the London Centre for Nanotechnology).

Published today in Nature and funded by UCL, NASA, Carnegie of Canada and the UK Engineering and Physical Sciences Research Council, the study describes the discovery and the detailed analysis of the remains undertaken by the team from UCL, the Geological Survey of Norway, US Geological Survey, The University of Western Australia, the University of Ottawa and the University of Leeds.

Prior to this discovery, the oldest microfossils reported were found in Western Australia and dated at 3,460 million years old but some scientists think they might be non-biological artefacts in the rocks. It was therefore a priority for the UCL-led team to determine whether the remains from Canada had biological origins.

The researchers systematically looked at the ways the tubes and filaments, made of haematite — a form of iron oxide or ‘rust’ — could have been made through non-biological methods such as temperature and pressure changes in the rock during burial of the sediments, but found all of the possibilities unlikely.

The haematite structures have the same characteristic branching of iron-oxidising bacteria found near other hydrothermal vents today and were found alongside graphite and minerals like apatite and carbonate which are found in biological matter including bones and teeth and are frequently associated with fossils.

They also found that the mineralised fossils are associated with spheroidal structures that usually contain fossils in younger rocks, suggesting that the haematite most likely formed when bacteria that oxidised iron for energy were fossilised in the rock.

“We found the filaments and tubes inside centimetre-sized structures called concretions or nodules, as well as other tiny spheroidal structures, called rosettes and granules, all of which we think are the products of putrefaction. They are mineralogically identical to those in younger rocks from Norway, the Great Lakes area of North America and Western Australia,” explained study lead, Dr Dominic Papineau (UCL Earth Sciences and the London Centre for Nanotechnology).

“The structures are composed of the minerals expected to form from putrefaction, and have been well documented throughout the geological record, from the beginning until today. The fact we unearthed them from one of the oldest known rock formations, suggests we’ve found direct evidence of one of Earth’s oldest life forms. This discovery helps us piece together the history of our planet and the remarkable life on it, and will help to identify traces of life elsewhere in the universe.”

Matthew Dodd concluded, “These discoveries demonstrate life developed on Earth at a time when Mars and Earth had liquid water at their surfaces, posing exciting questions for extra-terrestrial life. Therefore, we expect to find evidence for past life on Mars 4,000 million years ago, or if not, Earth may have been a special exception.”

See also here. And here.

Life on Earth may have begun as dividing droplets. Shape-shifting blobs of chemicals could split to reproduce, simulations show. By
Emily Conover, 7:00am, March 21, 2017: here.

Ancient primate fossil discovery in India


This 2014 video Lecture 16 Early Primate Evolution.

From the University of Southern California in the USA:

Newfound primate teeth take a big bite out of the evolutionary tree of life

The new species of primate from India is distantly related to the lemurs of Madagascar

February 28, 2017

Summary:

Fossil hunters have found part of an ancient primate jawbone related to lemurs — the primitive primate group distantly connected to monkeys, apes and humans, a researcher reports. Scientists named the new species Ramadapis sahnii and said that it existed 11 to 14 million years ago. It is a member of the ancient Sivaladapidae primate family, consumed leaves and was about the size of a house cat.

Fossil hunters have found part of an ancient primate jawbone related to lemurs — the primitive primate group distantly connected to monkeys, apes and humans, a USC researcher said.

Biren Patel, an associate professor of clinical cell and neurobiology at the Keck School of Medicine of USC, has been digging for fossils in a paleontologically rich area of Kashmir in northern India for six years. Although paleontologists have scoured this region for a century, relics of small extinct primates were rarely found or studied.

Scientists named the new species Ramadapis sahnii and said that it existed 11 to 14 million years ago. It is a member of the ancient Sivaladapidae primate family, consumed leaves and was about the size of a house cat, said Patel, co-author of the new study in the Journal of Human Evolution.

“Among the primates, the most common ones in the Kashmir region are from a genus called Sivapithecus, which were ancestral forms of orangutans,” Patel said. “The fossil we found is from a different group on the primate family tree — one that is poorly known in Asia. We are filling an ecological and biogeographical gap that wasn’t really well documented. Every little step adds to the understanding of our human family tree because we’re also primates.”

The last primate found in the area was 38 years ago. So, in addition to being a new species, this is the first primate fossil found in the area in decades.

“In the past, people were interested in searching for big things — things they could show off to other people,” Patel said. “A lot of the small fossils were not on their radar.”

The inch-and-a-quarter partial mandible belongs to a primate weighing less than 11 pounds that had outlived its other adapidae cousins found in North America, Europe and Africa by millions of years.

“New primates are always a hot topic, and this one is the first of its kind from its area in Asia, which has significant consequences for understanding primate evolution in the Old World,” said Michael Habib, an assistant professor of clinical cell and neurobiology at the Keck School of Medicine who was not involved in the study.

The question that remains is how the ecosystem in northern India supported this species when its relatives elsewhere were disappearing or had already gone extinct. Future fieldwork and recovering more fossil primates will help answer this question.

“People want to know about human origins, but to fully understand human origins, you need to understand all of primate origins, including the lemurs and these Sivaladapids,” Patel said. “Lemurs and sivaladapids are sister groups to what we are — the anthropoids — and we are all primates.”

Researchers from Hunter College of the City University of New York, New York Consortium in Evolutionary Primatology, Arizona State University, Stony Brook University and Panjab University also contributed to this study, which was supported by the Wenner-Gren Foundation, the American Association of Physical Anthropologists, the Institute of Human Origins and funding from some of the involved universities.