Coral reef decline in Hong Kong


This 2015 video is called Hong Kong coral reef thrives despite pollution.

From The University of Hong Kong:

Was Hong Kong once a coral reef paradise?

October 15, 2020

Researchers from The University of Hong Kong’s School of Biological Sciences and The Swire Institute of Marine Science, have for the first time investigated the historical presence of coral communities in the Greater Bay Area, revealing a catastrophic range collapse and loss of diversity that occurred in the last several decades.

The research, published in the journal Science Advances, looks at fossil corals collected from over 11 sites around Hong Kong, and creates the first palaeoecological baseline for coral communities in the Greater Bay Area. Led by PhD candidate and National Geographic Explorer Jonathan CYBULSKI, the team revealed what coral genera were present in the past well before major human impacts, and these include: Acropora, Montipora, Turbinaria, Psammacora, Pavona, Hydnophora, Porites, Platygyra, Goniopora and Faviids.

Every fossil tells a story

“The data we collect helps us to create a sort of fossil time machine,” said Cybulski. “As corals grow naturally, parts of them will break off and fall to seafloor becoming a part of the sediment. Over time, many different layers of these coral skeletons will stack on top of one another. With a bit of effort we can core through the sediments and collect the different layers and reveal what coral communities were like through time,” Cybulski explained. By using this method, the team was able to collect skeletons from over 5,000 years ago, which they determined thanks to radiocarbon dating by collaborator Dr Yusuke YOKOYAMA of the Atmosphere and Ocean Research Institute at The University of Tokyo.

When the team compared their fossil data to a modern-day dataset collected by collaborators at Baptist University — Dr Jian Wen QIU and Dr James XIE, several striking conclusions were revealed. First, there has been about a 40% decrease in the number of different corals living in Southern Hong Kong waters. Second, the greatest loss was of the ecologically important yet highly-sensitive staghorn corals (Acropora), which now only lives in an area about 50% smaller than its historic range. Finally, the greatest impact and losses of corals occurred in waters that are closest to the Pearl River Estuary in the southwest and Tolo Harbor in the Northeast. Based on the data, the teams best guess for the timing of this coral community change is conservatively within the last century, but likely within the past few decades. The overall conclusion: poor water quality driven by increased development and lack of proper treatment is presently the regions greatest threat to the survival of corals.

More hope for corals

“This trend we saw of a diversity decline and the loss of Acropora is consistent with other research in different areas of the world,” Cybulski continues: “It’s particularly bad news for this region, as Acropora represents the only type of coral that is complex, and creates physical space that promotes greater biodiversity. The loss of this coral is similar to losing all the big trees in a forest.” However, similar to trees in a forest, Cybulski continued by saying there is hope for Hong Kong’s corals through conservation efforts.

Indeed, this historical research has already played a critical role in protecting and restoring corals locally. In July earlier this year, PhD Candidate Ms Vriko YU, also of the Baker Lab at HKU, pioneered a coral restoration project in Hoi Ha Wan Marine Park (Note 1). This project aims to restore and better understand what it will take to save Hong Kong corals, and was made possible due to the water quality improvements in the bay by the local government.

Using Cybulski’s historical data to infer the appropriate steps needed, the team is now returning corals such as Acropora that previously thrived in Hoi Ha, back to their proper home. To date, 100% of the reintroduced coral have survived. Furthermore, the team has documented several coral-associated invertebrates at the site, showing that this restored habitat is indeed increasing biodiversity. The team feels this multi-faceted model — historical research that identifies major stress targets for local improvements — can be used by other researchers who hope to give corals their greatest chance for future survival.

New pterosaur species discovery in Morocco


This 16 October 2020 video, in Vietnamese, is about the discovery of the new pterosaur species Leptostomia begaaensis.

From the University of Portsmouth in England:

Beak bone reveals pterosaur like no other

October 14, 2020

A new species of small pterosaur — similar in size to a turkey — has been discovered, which is unlike any other pterosaur seen before due to its long slender toothless beak.

The fossilised piece of beak was a surprising find and was initially assumed to be part of the fin spine of a fish, but a team of palaeontologists from the universities of Portsmouth and Bath spotted the unusual texture of the bone — seen only in pterosaurs — and realised it was a piece of beak.

Professor David Martill of the University of Portsmouth, who co-authored the study, said: “We’ve never seen anything like this little pterosaur before. The bizarre shape of the beak was so unique, at first the fossils weren’t recognised as a pterosaur.”

Careful searching of the late Cretaceous Kem Kem strata of Morocco, where this particular bone was found, revealed additional fossils of the animal, which led to the team concluding it was a new species with a long, skinny beak, like that of a Kiwi. …

The new species, Leptostomia begaaensis, used its beak to probe dirt and mud for hidden prey, hunting like present-day sandpipers or kiwis to find worms, crustaceans, and perhaps even small hard-shelled clams. …

Dr Nick Longrich, from the Milner Centre for Evolution at the University of Bath, said: “Leptostomia may actually have been a fairly common pterosaur, but it’s so strange — people have probably been finding bits of this beast for years, but we didn’t know what they were until now.”

Long, slender beaks evolved in many modern birds. Those most similar to Leptostomia are probing birds — like sandpipers, kiwis, curlews, ibises and hoopoes. Some of these birds forage in earth for earthworms while others forage along beaches and tidal flats, feeding on bristle worms, fiddler crabs, and small clams.

“Pterosaur fossils typically preserve in watery settings — seas, lakes, and lagoons — because water carries sediments to bury bones. Pterosaurs flying over water to hunt for fish tend to fall in and die, so they’re common as fossils. Pterosaurs hunting along the margins of the water will preserve more rarely, and many from inland habitats may never preserve as fossils at all.

“There’s a similar pattern in birds. If all we had of birds was their fossils, we’d probably think that birds were mostly aquatic things like penguins, puffins, ducks and albatrosses. Even though they’re a minority of the species, their fossil record is a lot better than for land birds like hummingbirds, hawks, and ostriches.”

Over time, more and more species of pterosaurs with diverse lifestyles have been discovered. That trend, the new pterosaur suggests, is likely to continue.

The paper was published today in Cretaceous Research.

Mammal-like reptile discovery in Greenland


A team of scientists led by Grzegorz Nied?wiedzki from Uppsala University have investigated the jaw anatomy and tooth structure of a recently described new mammaliaform species named Kalaallitkigun jenkinsi. Credit: Marta Szubert

From Uppsala University in Sweden:

A tiny jaw from Greenland sheds light on the origin of complex teeth

October 13, 2020

A team of scientists led from Uppsala University have described the earliest known example of dentary bone with two rows of cusps on molars and double-rooted teeth. The new findings offer insight into mammal tooth evolution, particularly the development of double-rooted teeth. The results are published in the scientific journal PNAS.

The first mammals originated in the latest Triassic period, around 205 million years ago. An ancestor to mammals were the therapsids, “mammal-like reptiles” referred to as stem mammals or proto-mammals, which originated about 320-300 million years ago. One unique characteristic of the lineage that included mammals and animals related to mammals (synapsids) was that they developed complex occlusion. Close ancestors to mammals, called mammaliaforms, developed rows of cusps on molar-like teeth adapted for more omnivorous feeding. The origin of this multicusped pattern and double-rooted tooth has thus far remained unclear.

A team of scientists led by Grzegorz Niedzwiedzki from Uppsala University have investigated the jaw anatomy and tooth structure of a recently described new mammaliaform species named Kalaallitkigun jenkinsi. It was discovered on the eastern coast of Greenland and was a very small, shrew-like animal, probably covered with fur. It would have been the size of a large mouse and lived during the Late Triassic, around 215 million years ago.

“I knew it was important from the moment I took this 20 mm specimen off the ground,” says Niedzwiedzki, researcher at Uppsala University and the corresponding author of the publication.

Kalaallitkigun jenkinsi exhibits the earliest known dentary with two rows of cusps on molars and double-rooted teeth. The anatomical features place Kalaallitkigun jenkinsi as an intermediate between the mammals and the insectivorous morganucodontans, another type of mammaliaform.

The researchers believe that the structural changes in the teeth are related to changed feeding habits. In this case study, the animals were switching to a more omnivorous/herbivorous diet and the tooth crown was expanding laterally. Broader teeth with “basins” on the top surface are better for grinding food. This development also forced changes in the structure of the base of the tooth.

The biomechanical analysis that was carried out within the study found that multi-rooted teeth are better able to withstand mechanical stresses, including those of upper and lower tooth contact during biting, compared to single-rooted teeth. Human teeth, for instance, have this characteristic. The results suggest that the development of molar-like teeth with complex crowns may have developed together with biomechanically optimised dual roots.

“The early evolution of mammals is a particularly interesting topic in evolutionary studies. This tiny jaw from Greenland shows us how complex mammalian teeth arose and why they appeared,” says Niedzwiedzki.

“Our discovery of the oldest mammalian ancestor with double-rooted molars shows how important the role of teeth was in the origin of mammals. I had this idea to look at the biomechanics and the collaboration with the engineers turned out great,” says Tomasz Sulej, researcher at the Polish Academy of Sciences, first author of the publication.

“It seems that the fossils of close mammalian ancestors must be looked for in even older rocks,” says Sulej.

Big Money ruining Tyrannosaurus science


This 16 April 2020 video from the USA says about itself:

Mr. Nick talks about Stan, the resident T-rex at the Dinosaur Discovery Museum in Kenosha.

By Michael Greshko in National Geographic, 12 October 2020:

‘Stan’ the T. rex just sold for $31.8 million—and scientists are furious

The fossil was priceless to paleontologists, but experts fear it may be lost to research now that it belongs to an unknown bidder.

More than three decades ago in South Dakota, an amateur paleontologist named Stan Sacrison discovered a titan of the ancient Earth: the fossil of a mostly complete, 39-foot-long Tyrannosaurus rex. Nicknamed “Stan” after its discoverer, the beast was excavated in 1992 and has long been housed at the private Black Hills Institute of Geological Research in Hill City, South Dakota. But even if you’ve never been there, chances are good that you’ve seen this particular T. rex. Dozens of high-quality casts of its bones are on display in museums around the world, from Tokyo to Albuquerque, New Mexico.

Now, an auctioneer’s hammer has thrown Stan’s future into question, with the dinosaur bones sold off to the highest—and, so far, anonymous—bidder, stoking fear among experts that this beloved T. rex may be lost to science.

On October 6, the London-based auction house Christie’s sold the T. rex for a record $31.8 million, the highest price ever paid at auction for a fossil. The previous record was set in 1997 with the sale of “Sue,” a largely complete T. rex dug up by the same South Dakota institute and eventually purchased by the Field Museum of Natural History in Chicago for $8.36 million (equivalent to nearly $13.5 million today).

The day after Stan was sold, paleontologist Lindsay Zanno of the North Carolina Museum of Natural Sciences described the sale price as “simply staggering.”

“That’s an astronomical price that borders on absurdity, based on my knowledge of the market,” added paleontologist David Evans, the vertebrate paleontology chair at the Royal Ontario Museum in Toronto, who suggested the anonymous buyer could have spent the same funds in a far more effective way to deepen humanity’s understanding of the prehistoric beasts. “If this kind of money [were] invested properly, it could easily fund 15 permanent dinosaur research positions, or about 80 full field expeditions per year, in perpetuity,” he wrote in an email interview.

Scientists also have raised concerns about the negative ripple effects the sale could have on the study of dinosaurs by incentivizing people to seek out and sell well-preserved fossils rather than leaving them for paleontologists to study. (Find out more about the U.S. fossil trade in National Geographic magazine.)

“This is terrible for science and is a great boost and incentive for commercial outfits to exploit the dinosaur fossils of the American West,” says tyrannosaur expert Thomas Carr, a paleontologist at Carthage College in Kenosha, Wisconsin.

Paleontologists fear that if the buyer turns out to be a private collector, researchers and the public could lose access to the fossil, limiting their ability to repeat results such as measurements of its bones or conduct new analyses with more advanced tools and techniques. (Find out how scientists are reimaging dinosaurs in today’s “golden age” of paleontology.)

The ability to repeat experiments is “a tenet of science; it’s part of our ethical foundation,” Zanno says. “The paleontological world is holding its breath” to find out Stan’s future. …

For years, the Black Hills Institute had Stan on display in its Hill City museum. In addition to selling resin casts to other museums, the institute gave researchers access to the fossil, resulting in a flurry of scientific papers about everything from T. rex’s immense bite force to how the skull of T. rex could flex and move.

“The skeleton of Stan is without doubt one of the very best Tyrannosaurus rex specimens ever found, and it’s been published in the scientific literature many times,” Evans says. “Stan is one of the keystone specimens for understanding T. rex.”

Carr, for one, included Stan in three studies of tyrannosaur diversity and skull shape earlier in his career. He now regrets that decision because the fossil was always in private hands and therefore at risk of being sold. “In the end, I wound up contributing to the successful sales pitch of the fossil … along with the other 45 scientific publications on Stan,” he says. “We shouldn’t have touched it with a 10-foot pole.”

Stan’s path to the auction block began in 2015, when Neal Larson, a 35-percent shareholder in the Black Hills Institute (and brother of the institute’s president, paleontologist Pete Larson), sued the company to liquidate its assets. According to South Dakota’s Rapid City Journal, the company had removed Neal Larson from its board of directors three years earlier, after a bitter dispute over business dealings and his defense of a former employee accused of sexual misconduct.

A judge ruled in 2018 that Stan had to be auctioned off to pay Neal Larson for his stake in the institute, according to a company press release. …

In the U.S., fossil bones found on federal land are public property and can be collected only by researchers with permits. These remains also must stay in the public trust, in approved repositories such as accredited museums.

However, fossils discovered on U.S. private land can be bought and sold, and Stan isn’t the only U.S. dinosaur fossil recently on the auction block. In 2018, the French auctioneer Arguttes sold off a skeleton of the predatory dinosaur Allosaurus, drawing criticism from scientists because its sale, like Stan’s, risked creating the perception that dinosaurs were worth more in dollars than they were in discoveries.

The 2,000-member Society of Vertebrate Paleontology (SVP), which represents paleontologists around the world, opposes fossil auctions and has long discouraged the study of privately held fossils, out of concern that researchers and the public wouldn’t always be guaranteed access to them.

Jurassic mammals lived more like reptiles


This May 2019 video is called The Mammals that Lived Alongside the Dinosaurs.

From the University of Bristol in England:

Ancient tiny teeth reveal first mammals lived more like reptiles

October 12, 2020

Pioneering analysis of 200 million-year-old teeth belonging to the earliest mammals suggests they functioned like their cold-blooded counterparts — reptiles, leading less active but much longer lives.

The research, led by the University of Bristol, UK and University of Helsinki, Finland, published today in Nature Communications, is the first time palaeontologists have been able to study the physiologies of early fossil mammals directly, and turns on its head what was previously believed about our earliest ancestors.

Fossils of teeth, the size of a pinhead, from two of the earliest mammals, Morganucodon and Kuehneotherium, were scanned for the first time using powerful X-rays, shedding new light on the lifespan and evolution of these small mammals, which roamed the earth alongside early dinosaurs and were believed to be warm-blooded by many scientists. This allowed the team to study growth rings in their tooth sockets, deposited every year like tree rings, which could be counted to tell us how long these animals lived. The results indicated a maximum lifespan of up to 14 years — much older than their similarly sized furry successors such as mice and shrews, which tend to only survive a year or two in the wild.

“We made some amazing and very surprising discoveries. It was thought the key characteristics of mammals, including their warm-bloodedness, evolved at around the same time,” said lead author Dr Elis Newham, Research Associate at the University of Bristol, and previously PhD student at the University of Southampton during the time when this study was conducted.

“By contrast, our findings clearly show that, although they had bigger brains and more advanced behaviour, they didn’t live fast and die young but led a slower-paced, longer life akin to those of small reptiles, like lizards.”

Using advanced imaging technology in this way was the brainchild of Dr Newham’s supervisor Dr Pam Gill, Senior Research Associate at the University of Bristol and Scientific Associate at the Natural History Museum London, who was determined to get to the root of its potential.

“A colleague, one of the co-authors, had a tooth removed and told me they wanted to get it X-rayed, because it can tell all sorts of things about your life history. That got me wondering whether we could do the same to learn more about ancient mammals,” Dr Gill said.

By scanning the fossilised cementum, the material which locks the tooth roots into their socket in the gum and continues growing throughout life, Dr Gill hoped the preservation would be clear enough to determine the mammal’s lifespan.

To test the theory, an ancient tooth specimen belonging to Morganucodon was sent to Dr Ian Corfe, from the University of Helsinki and the Geological Survey of Finland, who scanned it using high-powered Synchrotron X-ray radiation.

“To our delight, although the cementum is only a fraction of a millimetre thick, the image from the scan was so clear the rings could literally be counted,” Dr Corfe said.

It marked the start of a six-year international study, which focused on these first mammals, Morganucodon and Kuehneotherium, known from Jurassic rocks in South Wales, UK, dating back nearly 200 million years.

“The little mammals fell into caves and holes in the rock, where their skeletons, including their teeth, fossilised. Thanks to the incredible preservation of these tiny fragments, we were able to examine hundreds of individuals of a species, giving greater confidence in the results than might be expected from fossils so old,” Dr Corfe added.

The journey saw the researchers take some 200 teeth specimens, provided by the Natural History Museum London and University Museum of Zoology Cambridge, to be scanned at the European Synchrotron Radiation Facility and the Swiss Light Source, among the world’s brightest X-ray light sources, in France and Switzerland, respectively.

In search of an exciting project, Dr Newham took this up for the MSc in Palaeobiology at the University of Bristol, and then a PhD at the University of Southampton.

“I was looking for something big to get my teeth into and this more than fitted the bill. The scanning alone took over a week and we ran 24-hour shifts to get it all done. It was an extraordinary experience, and when the images started coming through, we knew we were onto something,” Dr Newham said.

Dr Newham was the first to analyse the cementum layers and pick up on their huge significance.

“We digitally reconstructed the tooth roots in 3-D and these showed that Morganucodon lived for up to 14 years, and Kuehneotherium for up to nine years. I was dumbfounded as these lifespans were much longer than the one to three years we anticipated for tiny mammals of the same size,” Dr Newham said.

“They were otherwise quite mammal-like in their skeletons, skulls and teeth. They had specialised chewing teeth, relatively large brains and probably had hair, but their long lifespan shows they were living life at more of a reptilian pace than a mammalian one. There is good evidence that the ancestors of mammals began to become increasingly warm-blooded from the Late Permian, more than 270 million years ago, but, even 70 million years later, our ancestors were still functioning more like modern reptiles than mammals”

While their pace-of-life remained reptilian, evidence for an intermediate ability for sustained exercise was found in the bone tissue of these early mammals. As a living tissue, bone contains fat and blood vessels. The diameter of these blood vessels can reveal the maximum possible blood flow available to an animal, critical for activities such as foraging and hunting.

Dr Newham said: “We found that in the thigh bones of Morganucodon, the blood vessels had flow rates a little higher than in lizards of the same size, but much lower than in modern mammals. This suggests these early mammals were active for longer than small reptiles but could not live the energetic lifestyles of living mammals.”

Oldest non-African monkey fossils discovered


Mesopithecus

From Penn State University in the USA:

Oldest monkey fossils outside of Africa found

October 9, 2020

Three fossils found in a lignite mine in southeastern Yunan Province, China, are about 6.4 million years old, indicate monkeys existed in Asia at the same time as apes, and are probably the ancestors of some of the modern monkeys in the area, according to an international team of researchers.

“This is significant because they are some of the very oldest fossils of monkeys outside of Africa,” said Nina G. Jablonski, Evan Pugh University Professor of Anthropology, Penn State. “It is close to or actually the ancestor of many of the living monkeys of East Asia. One of the interesting things from the perspective of paleontology is that this monkey occurs at the same place and same time as ancient apes in Asia.”

The researchers, who included Jablonski and long-time collaborator Xueping Ji, department of paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming, China, studied the fossils unearthed from the Shuitangba lignite mine that has yielded many fossils. They report that “The mandible and proximal femur were found in close proximity and are probably of the same individual,” in a recent issue of the Journal of Human Evolution. Also uncovered slightly lower was a left calcaneus — heel bone — reported by Dionisios Youlatos, Aristotle University of Thessaloniki, Greece, in another paper online in the journal, that belongs to the same species of monkey, Mesopithecus pentelicus.

“The significance of the calcaneus is that it reveals the monkey was well adapted for moving nimbly and powerfully both on the ground and in the trees,” said Jablonski. “This locomotor versatility no doubt contributed to the success of the species in dispersing across woodland corridors from Europe to Asia.”

The lower jawbone and upper portion of the leg bone indicate that the individual was female, according to the researchers. They suggest that these monkeys were probably “jacks of all trades” able to navigate in the trees and on land. The teeth indicate they could eat a wide variety of plants, fruits and flowers, while apes eat mostly fruit.

“The thing that is fascinating about this monkey, that we know from molecular anthropology, is that, like other colobines (Old World monkeys), it had the ability to ferment cellulose,” said Jablonski. “It had a gut similar to that of a cow.”

These monkeys are successful because they can eat low-quality food high in cellulose and obtain sufficient energy by fermenting the food and using the subsequent fatty acids then available from the bacteria. A similar pathway is used by ruminant animals like cows, deer and goats.

“Monkeys and apes would have been eating fundamentally different things,” said Jablonski. “Apes eat fruits, flowers, things easy to digest, while monkeys eat leaves, seeds and even more mature leaves if they have to. Because of this different digestion, they don’t need to drink free water, getting all their water from vegetation.”

These monkeys do not have to live near bodies of water and can survive periods of dramatic climatic change.

“These monkeys are the same as those found in Greece during the same time period,” said Jablonski. “Suggesting they spread out from a center somewhere in central Europe and they did it fairly quickly. That is impressive when you think of how long it takes for an animal to disperse tens of thousands of kilometers through forest and woodlands.”

While there is evidence that the species began in Eastern Europe and moved out from there, the researchers say the exact patterns are unknown, but they do know the dispersal was rapid, in evolutionary terms. During the end of the Miocene when these monkeys were moving out of Eastern Europe, apes were becoming extinct or nearly so, everywhere except in Africa and parts of Southeast Asia.

“The late Miocene was a period of dramatic environmental change,” said Jablonski. “What we have at this site is a fascinating snapshot of the end of the Miocene — complete with one of the last apes and one of the new order of monkeys. This is an interesting case in primate evolution because it testifies to the value of versatility and adaptability in diverse and changing environments. It shows that once a highly adaptable form sets out, it is successful and can become the ancestral stock of many other species.”

The National Science Foundation, Penn State and Bryn Mawr funded this research.

New mosasaur species discovery in Morocco


This 8 October 2020 video is called New species of mosasaur discovered in Morocco, more than 66 MILLION years ago.

From the University of Alberta in Canada:

Paleontologists identify new species of mosasaur

Ancient lizard’s long, crocodile-like snout suggests it carved out a niche in a competitive marine ecosystem

October 7, 2020

A new species of an ancient marine reptile evolved to strike terror into the hearts of the normally safe, fast-swimming fish has been identified by a team of University of Alberta researchers, shedding light on what it took to survive in highly competitive ecosystems.

Gavialimimus almaghribensis, a new type of mosasaur, was catalogued and named by an international research team led by master’s student Catie Strong, who performed the research a year ago as part of an undergrad honours thesis guided by vertebrate paleontologist Michael Caldwell, professor in the Faculty of Science, along with collaborators from the University of Cincinnati and Flinders University.

More than a dozen types of mosasaur — which can reach 17 metres in length and resemble an overgrown komodo dragon — ruled over the marine environment in what is now Morocco at the tail end of the Late Cretaceous period between 72 and 66 million years ago.

What differentiates Strong’s version, however, is that it features a long, narrow snout and interlocking teeth — similar to the crocodilian gharials, a relative of crocodiles and alligators.

Strong said this discovery adds a layer of clarity to a diverse picture seemingly overcrowded with mega-predators all competing for food, space and resources.

“Its long snout reflects that this mosasaur was likely adapted to a specific form of predation, or niche partitioning, within this larger ecosystem.”

Strong explained there is evidence that each species of the giant marine lizard shows adaptations for different prey items or styles of predation.

“For some species, these adaptations can be very prominent, such as the extremely long snout and the interlocking teeth in Gavialimimus, which we hypothesized as helping it to catch rapidly moving prey,” she said.

She added another distinctive species would be Globidens simplex — described last year by the Caldwell lab — which has stout, globular teeth adapted for crushing hard prey like shelled animals.

“Not all of the adaptations in these dozen or so species are this dramatic, and in some cases there may have been some overlap in prey items, but overall there is evidence that there’s been diversification of these species into different niches,” Strong noted.

Alternatively, the main contrasting hypothesis would be a scenario of more direct competition among species. Strong said given the anatomical differences among these mosasaurs, though, the idea of niche partitioning seems more consistent with the anatomy of these various species.

“This does help give another dimension to that diversity and shows how all of these animals living at the same time in the same place were able to branch off and take their own paths through evolution to be able to coexist like that,” she said.

The remains of the G. almaghribensis included a metre-long skull and some isolated bones. There was nothing to explain the cause of death of the specimen, which was uncovered in a phosphate mine in Morocco that is rich in fossils.

Morocco is an incredibly good place to find fossils, especially in these phosphate mines,” Strong said. “Those phosphates themselves reflect sediments that would have been deposited in marine environments, so there are a lot of mosasaurs there.”

New dinosaur species discovered in Mongolia


This 7 October 2020 video is called Newly discovered species of toothless, two-fingered dinosaur thrived more than 68 million years ago.

From the University of Edinburgh in Scotland:

Toothless dino’s lost digits point to spread of parrot-like species

October 6, 2020

A newly discovered species of toothless, two-fingered dinosaur has shed light on how a group of parrot-like animals thrived more than 68 million years ago.

The unusual species had one less finger on each forearm than its close relatives, suggesting an adaptability which enabled the animals to spread during the Late Cretaceous Period, researchers say.

Multiple complete skeletons of the new species were unearthed in the Gobi Desert in Mongolia by a University of Edinburgh-led team.

Named Oksoko avarsan, the feathered, omnivorous creatures grew to around two metres long and had only two functional digits on each forearm. The animals had a large, toothless beak similar to the type seen in species of parrot today.

The remarkably well-preserved fossils provided the first evidence of digit loss in the three-fingered family of dinosaurs known as oviraptors.

The discovery that they could evolve forelimb adaptations suggests the group could alter their diets and lifestyles, and enabled them to diversify and multiply, the team says.

Researchers studied the reduction in size, and eventual loss, of a third finger across the oviraptors’ evolutionary history. The group’s arms and hands changed drastically in tandem with migrations to new geographic areas — specifically to what is now North America and the Gobi Desert.

The team also discovered that Oksoko avarsan — like many other prehistoric species — were social as juveniles. The fossil remains of four young dinosaurs were preserved resting together.

The study, published in the journal Royal Society Open Science, was funded by The Royal Society and the Natural Sciences and Engineering Council of Canada. It also involved researchers from the University of Alberta and Philip J. Currie Dinosaur Museum in Canada, Hokkaido University in Japan, and the Mongolian Academy of Sciences.

Dr Gregory Funston, of the University of Edinburgh’s School of GeoSciences, who led the study, said: “Oksoko avarsan is interesting because the skeletons are very complete and the way they were preserved resting together shows that juveniles roamed together in groups. But more importantly, its two-fingered hand prompted us to look at the way the hand and forelimb changed throughout the evolution of oviraptors — which hadn’t been studied before. This revealed some unexpected trends that are a key piece in the puzzle of why oviraptors were so diverse before the extinction that killed the dinosaurs.”

Ice Age Texas, USA manatees?


This 2018 video is called Manatees Are the “Sea Cows” of the Coasts | National Geographic Wild.

From the University of Texas at Austin in the USA:

Ice Age manatees may have called Texas home

October 1, 2020

Manatees don’t live year-round in Texas, but these gentle, slow-moving sea cows are known to occasionally visit, swimming in for a “summer vacation” from Florida and Mexico and returning to warmer waters for the winter.

Research led by The University of Texas at Austin has found fossil evidence for manatees along the Texas coast dating back to the most recent ice age. The discovery raises questions about whether manatees have been making the visit for thousands of years, or if an ancient population of ice age manatees once called Texas home somewhere between 11,000 and 240,000 years ago.

The findings were published in Palaeontologia Electronica.

“This was an unexpected thing for me because I don’t think about manatees being on the Texas coast today,” said lead author Christopher Bell, a professor at the UT Jackson School of Geosciences. “But they’re here. They’re just not well known.”

The paper co-authors are Sam Houston State University Natural History Collections curator William Godwin, SHSU alumna Kelsey Jenkins (now a graduate student at Yale University), and SHSU Professor Patrick Lewis.

The eight fossils described in the paper include manatee jawbones and rib fragments from the Pleistocene, the geological epoch of the last ice age. Most of the bones were collected from McFaddin Beach near Port Arthur and Caplen Beach near Galveston during the past 50 years by amateur fossil collectors who donated their finds to the SHSU collections.

“We have them from one decade to another, so we know it’s not from some old manatee that washed up, and we have them from different places,” Godwin said. “All these lines of evidence support that manatee bones were coming up in a constant way.”

The Jackson Museum of Earth History at UT holds two of the specimens.

A lower jawbone fossil, which was donated to the SHSU collections by amateur collector Joe Liggio, jumpstarted the research.

“I decided my collection would be better served in a museum,” Liggio said. “The manatee jaw was one of many unidentified bones in my collection.”

Manatee jawbones have a distinct S-shaped curve that immediately caught Godwin’s eye. But Godwin said he was met with skepticism when he sought other manatee fossils for comparison. He recalls reaching out to a fossil seller who told him point-blank “there are no Pleistocene manatees in Texas.”

But examination of the fossils by Bell and Lewis proved otherwise. The bones belonged to the same species of manatee that visits the Texas coast today, Trichechus manatus. An upper jawbone donated by U.S. Rep. Brian Babin was found to belong to an extinct form of the manatee, Trichechus manatus bakerorum.

The age of the manatee fossils is based on their association with better-known ice age fossils and paleo-indian artifacts that have been found on the same beaches.

It’s assumed that the cooler ice age climate would have made Texas waters even less hospitable to manatees than they are today. But the fact that manatees were in Texas — whether as visitors or residents — raises questions about the ancient environment and ancient manatees, Bell said. Either the coastal climate was warmer than is generally thought, or ice age manatees were more resilient to cooler temperatures than manatees of today.

The Texas coast stretched much farther into the Gulf of Mexico and hosted wider river outlets during the ice age than it does now, said Jackson School Professor David Mohrig, who was not part of the research team.

“Subsurface imaging of the now flooded modern continental shelf reveals both a greater number of coastal embayments and the presence of significantly wider channels during ice age times,” said Mohrig, an expert on how sedimentary landscapes evolve.

If there was a population of ice age manatees in Texas, it’s plausible that they would have rode out winters in these warmer river outlets, like how they do today in Florida and Mexico.

Did dinosaur age pterosaurs have feathers?


This December 2018 video says about itself:

Feathers might have originated tens of millions of years before we’d thought, and a 3D rendering of ankylosaur nasal passages lends new insight into how they stayed cool.

From the University of Portsmouth in England:

Evidence that prehistoric flying reptiles probably had feathers refuted

September 28, 2020

Summary: Experts have examined the evidence that prehistoric flying reptiles called pterosaurs had feathers and believe they were, in fact, bald.

The debate about when dinosaurs developed feathers has taken a new turn with a paper refuting earlier claims that feathers were also found on dinosaurs’ relatives, the flying reptiles called pterosaurs.

Pterosaur expert Dr David Unwin from the University of Leicester’s Centre for Palaeobiology Research, and Professor Dave Martill, of the University of Portsmouth have examined the evidence that these creatures had feathers and believe they were in fact bald.

They have responded to a suggestion by a group of his colleagues led by Zixiao Yang that some pterosaur fossils show evidence of feather-like branching filaments, ‘protofeathers’, on the animal’s skin.

Dr Yang, from Nanjing University, and colleagues presented their argument in a 2018 paper in the journal Nature Ecology and Evolution. Now Unwin and Martill, have offered an alternative, non-feather explanation for the fossil evidence in the same journal.

While this may seem like academic minutiae, it actually has huge palaeontological implications. Feathered pterosaurs would mean that the very earliest feathers first appeared on an ancestor shared by both pterosaurs and dinosaurs, since it is unlikely that something so complex developed separately in two different groups of animals.

This would mean that the very first feather-like elements evolved at least 80 million years earlier than currently thought. It would also suggest that all dinosaurs started out with feathers, or protofeathers but some groups, such as sauropods, subsequently lost them again — the complete opposite of currently accepted theory.

The evidence rests on tiny, hair-like filaments, less than one-tenth of a millimetre in diameter, which have been identified in about 30 pterosaur fossils. Among these, Yang and colleagues were only able to find just three specimens on which these filaments seem to exhibit a ‘branching structure’ typical of protofeathers.

Unwin and Martill propose that these are not protofeathers at all but tough fibres which form part of the internal structure of the pterosaur’s wing membrane, and that the ‘branching’ effect may simply be the result of these fibres decaying and unravelling.

Dr Unwin said: “The idea of feathered pterosaurs goes back to the nineteenth century but the fossil evidence was then, and still is, very weak. Exceptional claims require exceptional evidence — we have the former, but not the latter.”

Professor Martill noted that either way, palaeontologists will have to carefully reappraise ideas about the ecology of these ancient flying reptiles. He said, “If they really did have feathers, how did that make them look, and did they exhibit the same fantastic variety of colours exhibited by birds. And if they didn’t have feathers, then how did they keep warm at night, what limits did this have on their geographic range, did they stay away from colder northern climes as most reptiles do today. And how did they thermoregulate? The clues are so cryptic, that we are still a long way from working out just how these amazing animals worked.”

The paper “No protofeathers on pterosaurs” is published this week in Nature Ecology and Evolution.