New Moroccan pterosaur species discovery, again


This 2012 video says about itself:

Reptiles of the Skies | Walking with Dinosaurs in HQ | BBC

The Cretaceous period saw the breaking up of the northern and southern landmasses. Flying dinosaurs like Tapejara would master the air and the new coastlines of prehistoric Earth. The largest flying dinosaur Ornithocheirus prepares for a long flight to breeding grounds.

Broadcast in 1999, Walking with Dinosaurs set out to create the most accurate portrayal of prehistoric animals ever seen on the screen. Combining fact and informed speculation with cutting-edge computer graphics and animatronics effects, the series took two years to make.

Pterosaurs were not ‘flying dinosaurs’, though related to dinosaurs.

From the University of Portsmouth in England:

Fourth new pterosaur discovery in matter of weeks

April 2, 2020

You wait ages for a pterosaur and then four come along at once.

Hot on the heels of a recent paper discovering three new species of pterosaur, University of Portsmouth palaeobiologists have identified another new species — the first of its kind to be found on African soil.

Pterosaurs are the less well-known cousins of dinosaurs. They had adept flying ability — some as large as a fighter jet and others as small as a model aeroplane.

The new species belongs to a group of pterosaurs called tapejarids from the Cretaceous period. Tapejarids were small to medium-sized pterosaurs with wingspans perhaps as wide as four metres, most of which had large, broad crests sweeping up from the front of the skull.

They are well known in Brazil and China, and specimens have also been discovered in Europe, but this is the first time the flying reptile has been found in Africa.

It differs from the three recent species discovered as this one had no teeth — it was ‘edentulous’.

Professor David Martill, from the University’s School of the Environment, Geography and Geosciences, led the study. He said: “The study of Moroccan material shows that we are still far from having found all the paleontological treasures of North Africa. Even fragmentary fossils, like the jaw piece of the new pterosaur, can give us important information about the biodiversity of the past.”

PhD student Roy Smith, one of the co-authors, said: “I feel very privileged to be part of such an exciting discovery. Working in the Sahara was a life-changing experience, and discovering a new species of pterosaur is the icing on the cake.”

The new pterosaur has been named Afrotapejara zouhrii to honour the Moroccan palaeontologist Professor Samir Zouhri. Originally a mammal specialist, Zouhri also contributed to several discoveries of prehistoric reptiles in Morocco, including dinosaurs and pterosaurs.

Professor Martill said: “The opportunity to illuminate the diversity of pterosaurs in Africa while honouring a colleague does not happen every day.”

The research team included Dr David Unwin from the University of Leicester and Dr Nizar Ibrahim from the University of Detroit Mercy.

Palaeontologist Dr Ibrahim, said: “Samir Zouhri has played an important role in the development of Moroccan palaeontology, not only through his publications, but also because he organised scientific conferences in Morocco and edited an entire volume for the Geological Society of France on the subject of vertebrate palaeontology in Morocco.”

The fossil material is part of the collections of the Faculty of Sciences Aïn Chock, Casablanca Hassan II University and the paper was published in Cretaceous Research.

Dinosaur age rainforest discovery in Antarctica


This 2016 video says about itself:

Discovery of fossil “voice box” of Antarctic bird suggests dinosaurs couldn’t sing.

Researchers have found the oldest known fossil vocal organ of a bird … in Antarctica. The voice box is from a species related to ducks and geese that lived during the age of dinosaurs more than 66 million years ago.

A National Science Foundation-funded team led by the University of Texas at Austin discovered the ancient vocal organ called a syrinx–and its apparent absence from non-bird dinosaur fossils of the same age. Researchers believe the organ may have originated late in the evolution of birds after the origin of flight. Drawing on their research, team leader Julia Clarke said that other dinosaurs may not have been able to make noises similar to modern bird calls, but most likely made closed-mouth sounds similar to ostrich booms that don’t require a syrinx.

The organ was found in a fossil species called Vegavis iaai. The fossil was discovered in 1992 on Vega Island in the Antarctic Peninsula by a team from the Argentine Antarctic Institute. It was named in 2005 by Clarke and Argentine colleagues. But, it wasn’t until 2013 Clarke discovered the fossil syrinx in the new specimen and began analysis. The international team may figure out what dinosaurs sounded like, gaining insight into the origins of bird song. The findings appear in the October 12 issue of “Nature”.

From Imperial College London in England:

Traces of ancient rainforest in Antarctica point to a warmer prehistoric world

April 1, 2020

Researchers have found evidence of rainforests near the South Pole 90 million years ago, suggesting the climate was exceptionally warm at the time.

A team from the UK and Germany discovered forest soil from the Cretaceous period within 900 km of the South Pole. Their analysis of the preserved roots, pollen and spores shows that the world at that time was a lot warmer than previously thought.

The discovery and analysis were carried out by an international team of researchers led by geoscientists from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research in Germany and including Imperial College London researchers. Their findings are published today in Nature.

Co-author Professor Tina van de Flierdt, from the Department of Earth Science & Engineering at Imperial, said: “The preservation of this 90-million-year-old forest is exceptional, but even more surprising is the world it reveals. Even during months of darkness, swampy temperate rainforests were able to grow close to the South Pole, revealing an even warmer climate than we expected.”

The work also suggests that the carbon dioxide (CO2) levels in the atmosphere were higher than expected during the mid-Cretaceous period, 115-80 million years ago, challenging climate models of the period.

The mid-Cretaceous was the heyday of the dinosaurs but was also the warmest period in the past 140 million years, with temperatures in the tropics as high as 35 degrees Celsius and sea level 170 metres higher than today.

However, little was known about the environment south of the Antarctic Circle at this time. Now, researchers have discovered evidence of a temperate rainforest in the region, such as would be found in New Zealand today. This was despite a four-month polar night, meaning for a third of every year there was no life-giving sunlight at all.

The presence of the forest suggests average temperatures were around 12 degrees Celsius and that there was unlikely to be an ice cap at the South Pole at the time.

The evidence for the Antarctic forest comes from a core of sediment drilled into the seabed near the Pine Island and Thwaites glaciers in West Antarctica. One section of the core, that would have originally been deposited on land, caught the researchers’ attention with its strange colour.

The team CT-scanned the section of the core and discovered a dense network of fossil roots, which was so well preserved that they could make out individual cell structures. The sample also contained countless traces of pollen and spores from plants, including the first remnants of flowering plants ever found at these high Antarctic latitudes.

To reconstruct the environment of this preserved forest, the team assessed the climatic conditions under which the plants’ modern descendants live, as well as analysing temperature and precipitation indicators within the sample.

They found that the annual mean air temperature was around 12 degrees Celsius; roughly two degrees warmer than the mean temperature in Germany today. Average summer temperatures were around 19 degrees Celsius; water temperatures in the rivers and swamps reached up to 20 degrees; and the amount and intensity of rainfall in West Antarctica were similar to those in today’s Wales.

To get these conditions, the researchers conclude that 90 million years ago the Antarctic continent was covered with dense vegetation, there were no land-ice masses on the scale of an ice sheet in the South Pole region, and the carbon dioxide concentration in the atmosphere was far higher than previously assumed for the Cretaceous.

Lead author Dr Johann Klages, from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, said: “Before our study, the general assumption was that the global carbon dioxide concentration in the Cretaceous was roughly 1000 ppm. But in our model-based experiments, it took concentration levels of 1120 to 1680 ppm to reach the average temperatures back then in the Antarctic.”

New feathered dinosaur discovery in the USA


This 27 March 2020 video from the USA says about itself:

Fossil of 67m-year-old raptor dinosaur found in New Mexico

A meat-eating dinosaur with a feathered body, iron grip and a tail for agile pursuit of prey, has been discovered by fossil hunters, revealing that raptor dinosaurs were thriving right up to the point the asteroid struck, 66m years ago. The remains, comprising about 20 bones, were found in the San Juan Basin in New Mexico, in rocks dating to about 67m years ago. They are believed to be from a type of dromaeosaurid – a family of theropod dinosaurs that includes raptors – which appears to have been a close cousin of the velociraptor.

Dubbed Dineobellator notohesperus – a nod to the indigenous people of the region, the Navajo, the Latin word for warrior and the south-western US location it was found in – the animal would have been about two metres in length, weighed about 18-22kg, and been covered in feathers.

From the University of Pennsylvania in the USA:

New feathered dinosaur was one of the last surviving raptors

March 26, 2020

A new feathered dinosaur that lived in New Mexico 67 million years ago is one of the last known surviving raptor species, according to a new publication in the journal Scientific Reports.

Dineobellator notohesperus adds to scientists’ understanding of the paleo-biodiversity of the American Southwest, offering a clearer picture of what life was like in this region near the end of the reign of the dinosaurs.

Steven Jasinski, who recently completed his Ph.D. in Penn’s Department of Earth and Environmental Sciences in the School of Arts and Sciences, led the work to describe the new species, collaborating with doctoral advisor Peter Dodson of the School of Veterinary Medicine and Penn Arts and Sciences and as well as Robert Sullivan of the New Mexico Museum of Natural History and Science in Albuquerque.

In 2008, Sullivan found fossils of the new species in Cretaceous rocks of the San Juan Basin, New Mexico. He, along with his field team of Jasinski and James Nikas, collected the specimen on U.S. federal land under a permit issued by the Bureau of Land Management. The entire specimen was recovered over four field seasons. Jasinski and his coauthors gave the species its official name, Dineobellator notohesperus, which means “Navajo warrior from the Southwest”, in honor of the people who today live in the same region where this dinosaur once dwelled.

Dineobellator, as well as its Asian cousin Velociraptor, belong to a group of dinosaurs known as the dromaeosaurids. Members of this group are commonly referred to as “raptor” dinosaurs, thanks to movies such as “Jurassic Park” and “Jurassic World“. But unlike the terrifying beasts depicted in film, Dineobellator stood only about 3.5 feet (about 1 meter) at the hip and was 6 to 7 feet (about 2 meters) long — much smaller than its Hollywood counterparts.

Raptor dinosaurs are generally small, lightly built predators. Consequently, their remains are rare, particularly from the southwestern United States and Mexico. “While dromaeosaurids are better known from places like the northern United States, Canada, and Asia, little is known of the group farther south in North America,” says Jasinski.

While not all of the bones of this dinosaur were recovered, bones from the forearm have quill nobs — small bumps on the surface where feathers would be anchored by ligaments — an indication that Dineobellator bore feathers in life, similar to those inferred for Velociraptor.

Features of the animal’s forelimbs, including enlarged areas of the claws, suggest this dinosaur could strongly flex its arms and hands. This ability may have been useful for holding on to prey — using its hands for smaller animals such as birds and lizards, or perhaps its arms and feet for larger species such as other dinosaurs.

Its tail also possessed unique characteristics. While most raptors’ tails were straight and stiffened with rod-like structures, Dineobellator’s tail was rather flexible at its base, allowing the rest of the tail to remain stiff and act like a rudder.

“Think of what happens with a cat’s tail as it is running,” says Jasinski. “While the tail itself remains straight, it is also whipping around constantly as the animal is changing direction. A stiff tail that is highly mobile at its base allows for increased agility and changes in direction, and potentially aided Dineobellator in pursuing prey, especially in more open habitats.”

This new dinosaur provides a clearer picture of the biology of North American dromaeosaurid dinosaurs, especially concerning the distribution of feathers among its members.

“As we find evidence of more members possessing feathers, we believe it is likely that all the dromaeosaurids had feathers,” says Jasinski. The discovery also hints at some of the predatory habits of a group of iconic meat-eating dinosaurs that lived just before the extinction event that killed off all the dinosaurs that weren’t birds.

Jasinski plans to continue his field research in New Mexico with the hope of finding more fossils.

“It was with a lot of searching and a bit of luck that this dinosaur was found weathering out of a small hillside,” he says. “We do so much hiking and it is easy to overlook something or simply walk on the wrong side of a hill and miss something. We hope that the more we search, the better chance we have of finding more of Dineobellator or the other dinosaurs it lived alongside.”

Cretaceous pterosaurs discovery in Morocco


This October 2018 video is called Pterosaurs 101 | National Geographic.

From Baylor University in the USA:

Fossil finds give clues about flying reptiles in the Sahara 100 million years ago

Fish-eating pterosaurs with wingspans of up to 13 feet soared and snatched prey

March 25, 2020

Three new species of toothed pterosaurs — flying reptiles of the Cretaceous period, some 100 million years ago — have been identified in Africa by an international team of scientists led by Baylor University.

The pterosaurs, which soared above a world dominated by predators, formed part of an ancient river ecosystem in Africa that teemed with life including fish, crocodiles, turtles and several predatory dinosaurs.

“Pterosaur remains are very rare, with most known from Europe, South America and Asia. These new finds are very exciting and provide a window into the world of pterosaurs in Cretaceous Africa,” said lead author Megan L. Jacobs, a doctoral candidate in geosciences at Baylor University.

The study, published in the journal Cretaceous Research, is helping to uncover the poorly known evolutionary history of Africa during the time of the dinosaurs. The research finds that African pterosaurs were quite similar to those found on other continents. Their world included crocodile-like hunters and carnivorous dinosaurs, with few herbivores. Many predators, including the toothed pterosaurs, preyed on a superabundance of fish.

“For such large animals, they would have weighed very little,” Jacobs said. “Their wingspans were around 10 to 13 feet, with their bones almost paper-thin and full of air, very similar to birds. This allowed these awesome creatures to reach incredible sizes and still be able to take off and soar the skies.”

Pterosaurs snatched up their prey while on the wing, using a set of large spike-like teeth to grab. Large pterosaurs such as these would have been able to forage over hundreds of miles, with fossil evidence showing they flew between South America and Africa, similar to present-day birds such as condors and albatrosses, researchers said.

The specimens — identified by researchers from chunks of jaws with teeth — were obtained from fossil miners in a small village called Beggaa, just outside Erfoud in southeast Morocco. These villagers daily climb halfway up the side of a large escarpment, known as the Kem Kem beds, to a layer of a coarse sand, the most fossiliferous bed.

“They excavate everything they find, from teeth to bones to almost complete skeletons,” Jacobs said. “They then sell their finds to dealers and scientists who conduct fieldwork, ensuring the villagers make enough money to survive while we get new fossils to describe. These pterosaur fragments are unique and can be identified easily — if you know what to look for.”

One of the species, Anhanguera, previously was only known to be from Brazil. Another, Ornithocheirus, had until now only been found in England and Middle Asia.

This year’s find brings to five the total of toothed pterosaurs whose remains have been found in the Kem Kem beds, with the first described in the 1990s and the second one last year, Jacobs said. The specimens will be part of an acquisition in a museum in Morocco.

How dinosaur age ecosystems worked


This November 2018 video is called The Dinosaur Timeline (Mesozoic Era).

From the Geological Society of America in the USA:

Late Cretaceous dinosaur-dominated ecosystem

March 18, 2020

A topic of considerable interest to paleontologists is how dinosaur-dominated ecosystems were structured, how dinosaurs and co-occurring animals were distributed across the landscape, how they interacted with one another, and how these systems compared to ecosystems today. In the Late Cretaceous (~100-66 million years ago), North America was bisected into western and eastern landmasses by a shallow inland sea. The western landmass (Laramidia) contained a relatively thin stretch of land running north-south, which was bordered by that inland sea to the east and the rising Rocky Mountains to the west. Along this ancient landscape of warm and wet coastal plains comes an extremely rich fossil record of dinosaurs and other extinct animals.

Yet, from this record, an unexpected pattern has been identified: Most individual basins preserve an abundant and diverse assemblage of dinosaur species, often with multiple groups of co-occurring large (moose- to elephant-sized) herbivorous species, yet few individual species occur across multiple putatively contemporaneous geological formations (despite them often being less than a few hundred kilometers apart). This is in fairly stark contrast to the pattern seen in modern terrestrial mammal communities, where large-bodied species often have very extensive, often continent-spanning ranges. It has therefore been suggested that dinosaurs (and specifically large herbivorous dinosaurs) were particularly sensitive to environmental differences over relatively small geographic distances (particularly with respect to distance from sea level), and may have even segregated their use of the landscape between more coastal and inland sub-habitats within their local ranges.

In their new study published in Geology, Thomas Cullen and colleagues sought to test some of these hypotheses as part of their broader research reconstructing the paleoecology of Late Cretaceous systems.

One of the methods they’re using to do that is stable isotope analysis. This process measures differences in the compositions of non-decaying (hence, “stable”) isotopes of various common elements, as the degree of difference in these compositions in animal tissues and in the environment have known relationships to various factors such as diet, habitat use, water source, and temperature. So the team applied these methods to fossilized teeth and scales from a range of animals, including dinosaurs, crocodilians, mammals, bony fish, and rays, all preserved together from a relatively small region over a geologically short period of time in sites called vertebrate microfossil bonebeds.

By analyzing the stable carbon and oxygen isotope compositions of these fossils they were able to reconstruct their isotopic distributions in this ecosystem — a proxy for their diets and habitat use. They found evidence of expected predator-prey dietary relationships among the carnivorous and herbivorous dinosaurs and among aquatic reptiles like crocodilians and co-occurring fish species.

Critically, says Cullen, “What we didn’t see was evidence for large herbivorous dinosaurs segregating their habitats, as the hadrosaurs, ceratopsians, and ankylosaurs we sample all had strongly overlapping stable carbon and oxygen ranges. If some of those groups were making near-exclusive use of certain parts of the broader landscape, such as ceratopsians sticking to coastal environments and hadrosaurs sticking to more inland areas, then we should see them grouping distinctly from each other. Since we didn’t see that, that suggests they weren’t segregating their resource use in this manner. It’s possible they were doing so in different ways though, such as by feeding height segregation, or shifting where in the landscape they go seasonally, and our ongoing research is investigating some of these possibilities.”

Another important part of their study was comparing the fossil results to an environmentally similar modern environment in order to examine how similar they are ecologically. For a modern comparison, they examined the animal communities of the Atchafalaya River Basin of Louisiana, the largest contiguous wetland area in the continental U.S. The landscape of this area is very similar to their Cretaceous system, as are many elements of the plant and animal communities (not including the non-avian dinosaurs, of course).

From their comparisons, the team found that the Cretaceous system was similar to the Louisiana one in having a very large amount of resource interchange between the aquatic and terrestrial components of the ecosystem, suggesting that fairly diverse/mixed diets were common, and food being obtained from both terrestrial and aquatic sources was the norm. They also found that habitat use differences among the herbivorous mammals in the Louisiana system was more distinct than among those large herbivorous dinosaurs in the Cretaceous system, lending further evidence to their results about their lack of strict habitat use preferences.

Lastly, the team used modified oxygen stable isotope temperature equations to estimate mean annual temperature ranges for both systems (with the Louisiana one being a test of the accuracy of the method, as they could compare their results to directly measured water and air temperatures). The team found that in their Late Cretaceous ecosystem in Alberta, mean annual temperature was about 16-20 degrees C, a bit cooler than modern-day Louisiana, but much warmer than Alberta today, reflecting the hotter greenhouse climate that existed globally about 76 million years ago.

Characterizing how these ecosystems were structured during this time, and how these systems changed across time and space, particularly with respect to how they responded to changes in environmental conditions, may be of great importance for understanding and predicting future ecosystem responses under global climate change. The team’s research continues and should reveal much more about the food webs and ecology of the dinosaurs and other organisms that inhabited these ancient landscapes.

Dinosaur age ancestry of ducks, chickens discovery


This 18 March 2020 Cambridge university video from England is called ‘Wonderchicken‘ – Discovering the world’s oldest modern bird fossil.

From the University of Cambridge in England:

‘Wonderchicken’ fossil from the age of dinosaurs reveals origin of modern birds

March 18, 2020

The oldest fossil of a modern bird yet found, dating from the age of dinosaurs, has been identified by an international team of palaeontologists.

The spectacular fossil, affectionately nicknamed the ‘Wonderchicken‘, includes a nearly complete skull, hidden inside nondescript pieces of rock, and dates from less than one million years before the asteroid impact which eliminated all large dinosaurs.

Writing in the journal Nature, the team, led by the University of Cambridge, believe the new fossil helps clarify why birds survived the mass extinction event at the end of the Cretaceous period, while the giant dinosaurs did not.

Detailed analysis of the skull shows that it combines many features common to modern chicken- and duck-like birds, suggesting that the ‘Wonderchicken’ is close to the last common ancestor of modern chickens and ducks. The fossil was found in a limestone quarry near the Belgian-Dutch border, making it the first modern bird from the age of dinosaurs found in the northern hemisphere.

The fossil doesn’t look like much on first glance, with only a few small leg bone fragments poking out from a piece of rock the size of a deck of cards. Even those small bones attracted the researchers’ interest, since bird fossils from this point in Earth’s history are so rare.

Using high-resolution X-ray CT scans, the researchers peered through the rock to see what was lying beneath the surface. What they saw, just one millimetre beneath the rock, was the find of a lifetime: a nearly complete 66.7-million-year-old bird skull.

“The moment I first saw what was beneath the rock was the most exciting moment of my scientific career,” said Dr Daniel Field from Cambridge’s Department of Earth Sciences, who led the research. “This is one of the best-preserved fossil bird skulls of any age, from anywhere in the world. We almost had to pinch ourselves when we saw it, knowing that it was from such an important time in Earth’s history.

“The ability to CT scan fossils, like we can at the Cambridge Biotomography Centre, has completely transformed how we study palaeontology in the 21st century.”

“Finding the skull blew my mind,” said co-author Juan Benito, also from Cambridge, who was CT scanning the fossils with Field when the skull was discovered. “Without these cutting-edge scans, we never would have known that we were holding the oldest modern bird skull in the world.”

The skull, despite its age, is clearly recognisable as a modern bird. It combines many features common to the group that includes living chickens and ducks — a group called Galloanserae. Field describes the skull as a kind of ‘mash-up’ of a chicken and a duck.

“The origins of living bird diversity are shrouded in mystery — other than knowing that modern birds arose at some point towards the end of the age of dinosaurs, we have very little fossil evidence of them until after the asteroid hit,” said co-author Albert Chen, a PhD student based at Cambridge. “This fossil provides our earliest direct glimpse of what modern birds were like during the initial stages of their evolutionary history.”

While the fossil is colloquially known as the Wonderchicken, the researchers have given it the slightly more elegant name of Asteriornis, in reference to Asteria, the Greek Titan goddess of falling stars.

“We thought it was an appropriate name for a creature that lived just before the end-Cretaceous asteroid impact,” said co-author Dr Daniel Ksepka from the Bruce Museum in Greenwich, Connecticut. “In Greek mythology, Asteria transforms herself into a quail, and we believe Asteriornis was close to the common ancestor that today includes quails, as well as chickens and ducks.”

The fact that Asteriornis was found in Europe is another thing which makes it so extraordinary. “The late Cretaceous fossil record of birds from Europe is extremely sparse,” said co-author Dr John Jagt from the Natuurhistorische Museum Maastricht in the Netherlands. “The discovery of Asteriornis provides some of the first evidence that Europe was a key area in the early evolutionary history of modern birds.”

“This fossil tells us that early on, at least some modern birds were fairly small-bodied, ground-dwelling birds that lived near the seashore,” said Field. “Asteriornis now gives us a search image for future fossil discoveries — hopefully it ushers in a new era of fossil finds that help clarify how, when and where modern birds first evolved.”

The announcement of the Wonderchicken find coincides with a new exhibit at Cambridge’s Sedgwick Museum of Earth Sciences, where visitors can learn more about Asteriornis and see the fossil up close. “Dawn of the Wonderchicken” runs from 19 March to 15 June. Admission is free.

Dr Daniel Field is funded by a UKRI Future Leaders Fellowship. He is a University Lecturer in the Department of Earth Sciences at the University of Cambridge, and a Fellow of Christ’s College Cambridge.

Dinosaur age beetle pollination of flowers


This 16 August 2018 video says about itself:

Beetle Found In Ancient Amber Was Early Pollinator

Gizmodo reports an amazing Cretaceous Period beetle has been found in amber with bits of pollen around it.

The pollen suggests they first emerged during the Middle Triassic.

This kind of evidence is extremely rare to find.

Early pollinating insects were paired with non-flowering plants.

This means that beetle pollination of cycads evolved before the breakup of the Gondwana supercontinent during the Early Jurassic 167 million years ago.

From the University of Bonn in Germany:

Beetles changed their diet during the Cretaceous period

International team decodes 99 million-year-old amber fossils

March 18, 2020

Like a snapshot, amber preserves bygone worlds. An international team of paleontologists from the University of Bonn has now described four new beetle species in fossilized tree resin from Myanmar, which belong to the Kateretidae family. They still exist today, with only a few species. As well as the about 99 million years old insects, the amber also includes pollen. It seems that the beetles helped the flowering plants to victory, because they contributed to their propagation. In turn, the beetles benefited from the new food source. The results have now been published in the journal “iScience”.

The researchers have described the new beetle species using specimens in four amber pieces from Myanmar (previously known as Burma). The pieces are estimated to be 99 million years old and date from the Cretaceous period, when dinosaurs were a rich and diverse group. Two of the pieces are in the Museum of Natural Sciences of Barcelona (Spain), while the other two specimens are kept in the Institute of Geology and Palaeontology in Nanjing (China).

“Although Myanmar surprises us time and again with finds of great scientific importance, amber pieces containing numerous organisms are not often found there,” says project leader Dr. David Peris, who comes from Spain and is a postdoc at the Institute for Geosciences at the University of Bonn with an Alexander von Humboldt Foundation’s fellowship. He carried out the project with scientists from the USA, Spain, Germany, China and the Czech Republic.

Three of the examined amber pieces contained numerous beetles, while the fourth piece contained only one specimen of this family. Many pollen grains of different groups of seed plants, some of them long extinct, have been preserved with the beetles in the tree resin. Peris: “This close association suggests that the grains were distributed in the viscous lump of resin by the movement of the beetles.”

The beetle family still exists today

The Kateretidae are a small family of beetles with less than 100 described modern species that today live in South America and other temperate and subtropical regions. The species of this family feed on pollen and flower parts. Due to their dietary habits, they are nowadays regarded as pollinators of flowering plants (angiosperms). But in the middle Cretaceous period their rapid development had just begun. Previously, the Earth was colonized by gymnosperms, literally meaning “naked seeds”, which also includes our conifers. “The most important aspect of this study is that the pollen grains in three of the amber pieces do not belong to flowering plants,” says Peris. The pollen grains on the beetle of the fourth piece of amber, however, come from a water lily, a group of very primitive angiosperms that emerged at an early stage.

Living together for mutual benefit

There are other pollinating insects in amber, but almost all of them concern gymnosperms. When flowering plants (angiosperms) began their early development, they represented a new resource that was used by the Kateretidae. The beetles adapted quickly and formed a mutually beneficial symbiosis: The flowering plants served the beetles as a food source and these animals contributed to the propagation of the new angiosperms by pollination.

In earlier studies, it was speculated that the beetles might belong to the insect groups that pollinated the earliest flowers. Some of these animals had developed the ability to pollinate gymnosperms well before the appearance of angiosperms. “Our study supports this hypothesis of significant host plant relocation, as there are no Kateretidae associated with gymnosperms today,” says Peris. Adapting to the new resource has proven to be an evolutionary advantage.