Feathered dinosaurs differed from birds


This 2013 BBC video says about itself:

With its feathered plumage acting as camouflage Sinornithosaurus moves unseen through the treetops. Recent studies suggest Sinornithosaurus was capable of hunting at night as well as delivering a lethal poison in its bite.

From San Diego Natural History Museum in the USA:

New feathered dinosaur shows dinosaurs grew up differently from birds

January 15, 2020

A new species of feathered dinosaur has been discovered in China, and described by American and Chinese authors and published today in the journal The Anatomical Record.

The one-of-a-kind specimen offers a window into what the earth was like 120 million years ago. The fossil preserves feathers and bones that provide new information about how dinosaurs grew and how they differed from birds.

“The new dinosaur fits in with an incredible radiation of feathered, winged animals that are closely related to the origin of birds“, said Dr. Ashley Poust, who analyzed the specimens while he was a student at Montana State University and during his time as a Ph.D. student at University of California, Berkeley. Poust is now postdoctoral researcher at the San Diego Natural History Museum.

“Studying specimens like this not only shows us the sometimes-surprising paths that ancient life has taken, but also allows us to test ideas about how important bird characteristics, including flight, arose in the distant past.”

Scientists named the dinosaur Wulong bohaiensis. Wulong is Chinese for “the dancing dragon” and references the position of the beautifully articulated specimen.

Wulong bohaiensis

About the discovery

The specimen was found more than a decade ago by a farmer in China, in the fossil-rich Jehol Province, and since then has been housed in the collection of The Dalian Natural History Museum in Liaoning, a northeastern Chinese province bordering North Korea and the Yellow Sea. The skeletal bones were analyzed by Poust alongside his advisor Dr. David Varricchio from Montana State University while Poust was a student there.

Larger than a common crow and smaller than a raven, but with a long, bony tail which would have doubled its length, Wulong bohaiensis had a narrow face filled with sharp teeth. Its bones were thin and small, and the animal was covered with feathers, including a wing-like array on both its arms and legs and two long plumes at the end of its tail.

This animal is one of the earliest relatives of Velociraptor, the famous dromaeosaurid theropod dinosaur that lived approximately 75 million years ago. Wulong’s closest well-known relative would have been Microraptor, a genus of small, four-winged paravian dinosaurs.

The discovery is significant not only because it describes a dinosaur that is new to science, but also because it shows connection between birds and dinosaurs.

“The specimen has feathers on its limbs and tail that we associate with adult birds, but it had other features that made us think it was a juvenile,” said Poust. To understand this contradiction, the scientists cut up several bones of the new dinosaur to examine under a microscope. This technique, called bone histology, is becoming a regular part of the paleontology toolbox, but it’s still sometimes difficult to convince museums to let a researcher remove part of a nice skeleton. “Thankfully, our coauthors at the Dalian Natural History Museum were really forward-thinking and allowed us to apply these techniques, not only to Wulong, but also to another dinosaur, a close relative that looked more adult called Sinornithosaurus.”

The bones showed that the new dinosaur was a juvenile. This means that at least some dinosaurs were getting very mature looking feathers well before they were done growing. Birds grow up very fast and often don’t get their adult plumage until well after they are full-sized. Showy feathers, especially those used for mating, are particularly delayed. And yet here was an immature dinosaur with two long feathers extending beyond the tip of the tail.

“Either the young dinosaurs needed these tail feathers for some function we don’t know about, or they were growing their feathers really differently from most living birds,” explained Poust.

An additional surprise came from the second dinosaur the scientists sampled; Sinornithosaurus wasn’t done growing either. The bone tissue was that of an actively growing animal and it lacked an External Fundamental System: a structure on the outside of the bone that vertebrates form when they’re full size. “Here was an animal that was large and had adult looking bones: we thought it was going to be mature, but histology proved that idea wrong. It was older than Wulong, but seems to have been still growing. Researchers need to be really careful about determining whether a specimen is adult or not. Until we learn a lot more, histology is really the most dependable way.”

In spite of these cautions, Poust says there is a lot more to learn about dinosaurs.

“We’re talking about animals that lived twice as long ago as T. rex, so it’s pretty amazing how well preserved they are. It’s really very exciting to see inside these animals for the first time.”

About the Jehol Biota

The area in which the specimen was found is one of the richest fossil deposits in the world. The Jehol biota is known for the incredible variety of animals that were alive at the time. It is also one of the earliest bird-rich environments, where birds, bird-like dinosaurs, and pterosaurs all shared the same habitat.

“There was a lot of flying, gliding, and flapping around these ancient lakes,” says Poust. “As we continue to discover more about the diversity of these small animals it becomes interesting how they all might have fit into the ecosystem.” Other important changes were happening at the same time in the Early Cretaceous, including the spread of flowering plants. “It was an alien world, but with some of the earliest feathers and earliest flowers, it would have been a pretty one.”

Dinosaur age slime mold discovery in amber


This 2015 video says about itself:

Amazing slime mold. Time-lapse of slime mold (mould) behaviour. First, we see the phase where it is actively looking for food and following chemical cues from potential food items. Lastly, we see a phase that somewhat resembles fungoid in nature, ie sporulation. When food has run out or a change in environmental conditions is encountered, these things can trigger sporulation to occur.

Slime molds (moulds) are NOT related to fungi although originally classified within this group but are now placed within the Amoebazoa.

From the University of Göttingen in Germany:

100 million years in amber: Researchers discover oldest fossilized slime mold

Team from Göttingen, Helsinki and New York gets new insights into the evolution of myxomycetes

January 8, 2020

Most people associate the idea of creatures trapped in amber with insects or spiders, which are preserved lifelike in fossil tree resin. An international research team of palaeontologists and biologists from the Universities of Göttingen and Helsinki, and the American Museum of Natural History in New York has now discovered the oldest slime mould identified to date. The fossil is about 100 million years old and is exquisitely preserved in amber from Myanmar. The results have been published in the journal Scientific Reports.

Slime moulds, also called myxomycetes, belong to a group known as ‘Amoebozoa’. These are microscopic organisms that live most of the time as single mobile cells hidden in the soil or in rotting wood, where they eat bacteria. However, they can join together to form complex, beautiful and delicate fruiting bodies, which serve to make and spread spores.

Since fossil slime moulds are extremely rare, studying their evolutionary history has been very difficult. So far, there have only been two confirmed reports of fossils of fruiting bodies and these are just 35 to 40 million years old. The discovery of fossil myxomycetes is very unlikely because their fruiting bodies are extremely short-lived. The researchers are therefore astounded by the chain of events that must have led to the preservation of this newly identified fossil. “The fragile fruiting bodies were most likely torn from the tree bark by a lizard, which was also caught in the sticky tree resin, and finally embedded in it together with the reptile”, says Professor Jouko Rikkinen from the University of Helsinki. The lizard detached the fruiting bodies at a relatively early stage when the spores had not yet been released, which now reveals valuable information about the evolutionary history of these fascinating organisms.

The researchers were surprised by the discovery that the slime mould can easily be assigned to a genus still living today. “The fossil provides unique insights into the longevity of the ecological adaptations of myxomycetes,” explains palaeontologist Professor Alexander Schmidt from the University of Göttingen, lead author of the study.

“We interpret this as evidence of strong environmental selection. It seems that slime moulds that spread very small spores using the wind had an advantage,” says Rikkinen. The ability of slime moulds to develop long-lasting resting stages in their life cycle, which can last for years, probably also contributes to the remarkable similarity of the fossil to its closest present-day relatives.

‘Nanotyrannus were young Tyrannosaurus rex’


This 2016 video says about itself:

In this video I talk about the most controversial tyrannosaurid, Nanotyrannus. I give the two sides of the story of the Nanotyrannus – Juvenile T. Rex argument so that it is a bit more clear and transparent.

I also talk about the history of Nanotyrannus, how the argument has developed and changed and the perception of current scientists of this argument.

Nanotyrannus lancensis is around 5m long, lived in the Cretaceous Period in North America and had amazing binocular vision and depth perception.

Among the specimens discovered of Nanotyrannus is “Jane” which is considered to be a juvenile T. Rex as evidence shows it was entering the rapid growth stage of large carnivorous dinosaurs.

From the Oklahoma State University Center for Health Sciences in the USA:

Researchers learn more about teen-age T.Rex

How the large predator grew up

January 1, 2020

Summary: A team studied two mid-sized tyrannosaur skeletons and concluded they were in fact teenage T.Rex and not a new pygmy species. They also studied the interior of the leg bones to determine age and how the dinosaurs grew and matured.

Without a doubt, Tyrannosaurus rex is the most famous dinosaur in the world. The 40-foot-long predator with bone crushing teeth inside a five-foot long head are the stuff of legend. Now, a look within the bones of two mid-sized, immature T. rex allow scientists to learn about the tyrant king’s terrible teens as well.

In the early 2000s, the fossil skeletons of two comparatively small T. rex were collected from Carter County, Montana, by Burpee Museum of Natural History in Rockford, Illinois. Nicknamed “Jane” and “Petey”, the tyrannosaurs would have been slightly taller than a draft horse and twice as long.

The team led by Holly Woodward, Ph.D., from Oklahoma State University Center for Health Sciences studied Jane and Petey to better understand T. rex life history.

The study “Growing up Tyrannosaurus rex: histology refutes pygmy ‘Nanotyrannus’ and supports ontogenetic niche partitioning in juvenile Tyrannosaurus” appears in the peer-reviewed journal Science Advances.

Co-authors include Jack Horner, presidential fellow at Chapman University; Nathan Myhrvold, founder and CEO of Intellectual Ventures; Katie Tremaine, graduate student at Montana State University; Scott Williams, paleontology lab and field specialist at Museum of the Rockies; and Lindsay Zanno, division head of paleontology at the North Carolina Museum of Natural Sciences. Supplemental histological work was conducted at the Diane Gabriel Histology Labs at Museum of the Rockies/Montana State University.

“Historically, many museums would collect the biggest, most impressive fossils of a dinosaur species for display and ignore the others,” said Woodward. “The problem is that those smaller fossils may be from younger animals. So, for a long while we’ve had large gaps in our understanding of how dinosaurs grew up, and T. rex is no exception.”

The smaller size of Jane and Petey is what make them so incredibly important. Not only can scientists now study how the bones and proportions changed as T. rex matured, but they can also utilize paleohistology — the study of fossil bone microstructure — to learn about juvenile growth rates and ages. Woodward and her team removed thin slices from the leg bones of Jane and Petey and examined them at high magnification.

“To me, it’s always amazing to find that if you have something like a huge fossilized dinosaur bone, it’s fossilized on the microscopic level as well,” Woodward said. “And by comparing these fossilized microstructures to similar features found in modern bone, we know they provide clues to metabolism, growth rate, and age.”

The team determined that the small T. rex were growing as fast as modern-day warm-blooded animals such as mammals and birds. Woodward and her colleagues also found that by counting the annual rings within the bone, much like counting tree rings, Jane and Petey were teenaged T.rex when they died; 13 and 15 years old, respectively.

There had been speculation that the two small skeletons weren’t T. rex at all, but a smaller pygmy relative Nanotyrannus. Study of the bones using histology led the researchers to the conclusion that the skeletons were juvenile T. rex and not a new pygmy species.

Instead, Woodward points out, because it took T. rex up to twenty years to reach adult size, the tyrant king probably underwent drastic changes as it matured. Juveniles such as Jane and Petey were fast, fleet-footed, and had knife-like teeth for cutting, whereas adults were lumbering bone crushers. Not only that, but Woodward’s team discovered that growing T. rex could do a neat trick: if its food source was scarce during a particular year, it just didn’t grow as much. And if food was plentiful, it grew a lot.

“The spacing between annual growth rings record how much an individual grows from one year to the next. The spacing between the rings within Jane, Petey, and even older individuals is inconsistent — some years the spacing is close together, and other years it’s spread apart,” said Woodward.

The research by Woodward and her team writes a new chapter in the early years of the world’s most famous dinosaur, providing evidence that it assumed the crown of tyrant king long before it reached adult size.

Nanuqsaurus, carnivorous dinosaur, video


This 30 December 2019 video says about itself:

Tyrannosaurs were some of the most imposing and successful predators to have existed. They were a diverse group as well, and Nanuqsaurus was among the most unique of these remarkable animals.

Dinosaur era mammal, new discovery


This 6 December 2019 video says about itself:

This Ancient Mammal‘s Ears Were Built for Chewing

In this weeks science news, a new fossil has been found that might help us understand how jaw bones evolved into complex middle ears found in mammals, and a new treatment regimen for treating babies with HIV shows promise.

Appalachiosaurus, big North American carnivorous dinosaur


This 22 December 2019 video from the USA says about itself:

The Tyrant of East America – Appalachiosaurus

While T. rex ruled in the west, other tyrants that lived long before it were the top predators on the ancient eastern continent of Appalachia.

Fossil ‘spider’ was dinosaur age crayfish


This 2015 video says about itself:

This is part/counterpart example of a fossil crayfish, Cricoidoscelosus aethus (Subphylum Crustacea, Class Malacostraca, Order Decapoda, Superfamily Astacidea, Family Cricoscelosidae) dating to the Lower Cretaceous ~128 million years ago from the Yixian Formation, Lingyuan, Liaoning Province in China.

From the University of Kansas in the USA:

A ‘Jackalope‘ of an ancient spider fossil deemed a hoax, unmasked as a crayfish

December 19, 2019

Summary: A team used fluorescence microscopy to analyze the supposed spider and differentiate what parts of the specimen were fossilized organism, and which parts were potentially doctored.

Earlier this year, a remarkable new fossil specimen was unearthed in the Lower Cretaceous Yixian Formation of China by area fossil hunters — possibly a huge ancient spider species, as yet unknown to science.

The locals sold the fossil to scientists at the Dalian Natural History Museum in Liaoning, China, who published a description of the fossil species in Acta Geologica Sinica, the peer-reviewed journal of the Geological Society of China. The Chinese team gave the spider the scientific name Mongolarachne chaoyangensis.

But other scientists in Beijing, upon seeing the paper, had suspicions. The spider fossil was huge and strange looking. Concerned, they contacted a U.S. colleague who specializes in ancient spider fossils: Paul Selden, distinguished professor of invertebrate paleontology in the Department of Geology at the University of Kansas.

“I was obviously very skeptical,” Selden said. “The paper had very few details, so my colleagues in Beijing borrowed the specimen from the people in the Southern University, and I got to look at it. Immediately, I realized there was something wrong with it — it clearly wasn’t a spider. It was missing various parts, had too many segments in its six legs, and huge eyes. I puzzled and puzzled over it until my colleague in Beijing, Chungkun Shih, said, ‘Well, you know, there’s quite a lot of crayfish in this particular locality. Maybe it’s one of those.’ So, I realized what happened was I got a very badly preserved crayfish onto which someone had painted on some legs.”

Selden and his colleagues at KU and in China (including the lead author of the paper originally describing the fossil) recently published an account of their detective work in the peer-reviewed journal Palaeoentomology.

“These things are dug up by local farmers mostly, and they see what money they can get for them,” Selden said. “They obviously picked up this thing and thought, ‘Well, you know, it looks a bit like a spider.’ And so, they thought they’d paint on some legs — but it’s done rather skillfully. So, at first glance, or from a distance, it looks pretty good. It’s not till you get down to the microscope and look in detail that you realize they’re clearly things wrong with it. And, of course, the people who described it are perfectly good paleontologists — they’re just not experts on spiders. So, they were taken in.”

In possession of the original fossil specimen at KU, Selden teamed up with his graduate student Matt Downen and with Alison Olcott, associate professor of geology. The team used fluorescence microscopy to analyze the supposed spider and differentiate what parts of the specimen were fossilized organism, and which parts were potentially doctored.

“Fluorescence microscopy is a nice way of distinguishing what’s painted on from what’s real,” Selden said. “So, we put it under the fluorescence microscope and, of course, being a huge specimen it’s far too big for the microscope. We had to do it in bits. But we were able to show the bits that were painted and distinguish those from the rock and from the actual, real fossil.”

The team’s application of fluorescence microscopy on the fossil specimen showed four distinct responses: regions that appear bright white, bright blue, bright yellow, and ones that are dull red. According to the paper, the bright white areas are probably a mended crack. The bright blue is likely from mineral composition of the host rock. The yellow fluorescence could indicate an aliphatic carbon from oil-based paint used to alter the crayfish fossil. Finally, the red fluorescence probably indicates the remnants of the original crayfish exoskeleton.

“We produced this little paper showing how people could be very good at faking what was clearly a rather poor fossil — it wasn’t going to bring in a lot of money — and turning it into something which somebody bought for quite a lot of money, I imagine, but it clearly was a fake,” the KU researcher said.

Selden said in the world of fossils fakery is commonplace, as impoverished fossil hunters are apt to doctor fossils for monetary gain.

What’s less common, he said, was a fake fossil spider, or a forgery making its way into an academic journal. However, he acknowledged the difficulty of verifying a fossil and admitted he’d been fooled in the past.

“I mean, I’ve seen lots of forgeries, and in fact I’ve even been taken in by fossils in a very dark room in Brazil,” he said. “It looked interesting until you get to in the daylight the next day realize it’s been it’s been enhanced, let’s say, for sale. I have not seen it with Chinese invertebrates before. It’s very common with, you know, really expensive dinosaurs and that sort of stuff. Maybe they get two fossils and join them together, this kind of thing. Normally, there’s not enough to gain from that kind of trouble with an invertebrate.

“But somebody obviously thought it wasn’t such a big deal to stick a few legs onto this, because a giant spider looks very nice. I’m not sure the people who sell them necessarily think they’re trying to dupe scientists. You tend to come across these things framed — they look very pretty. They’re not necessarily going to be bought by scientists, but by tourists.”

Selden’s coauthors on the paper were Olcott and Downen of KU, along with Shih of Capital Normal University in Beijing, and Dong Ren of Capital Normal University and the Smithsonian Institution, and Ciaodong Cheng of Dalian Natural History Museum.

Selden didn’t know the eventual fate of the enhanced spider fossil, which he likened to the famed “jackalope.”

He said he thought it would go back to China where it could be put on display as a cautionary tale. One thing is for certain: it will be stripped of the scientific name Mongolarachne chaoyangensis and rechristened as a crayfish. Because of the fossil’s alterations and state of preservation, Selden said it was hard to pin down its exact species. The team tentatively placed the fossil in Cricoidoscelosus aethus, “because this is marginally the commoner of the two crayfish recorded from the Yixian Formation.”