Tyrannosaur discovery in Utah, USA


This 2015 video from the USA says about itself:

“Teratophoneus” is a genus of carnivorous tyrannosaurid theropod dinosaur which lived during the late Cretaceous period in what is now Utah, USA. It is known from an incomplete skull and postcranial skeleton recovered from the Kaiparowits Formation. “Teratophoneus” was named by Thomas D. Carr, Thomas E. Williamson, Brooks B. Britt and Ken Stadtman in 2011 and the type species is “T. curriei”. The generic name is derived from Greek “teras”, “monster”, and “phoneus”, “murderer”. The specific name honors Philip J. Currie.

From the University of Utah in the USA:

New tyrannosaur fossil is most complete found in Southwestern US

Researchers are amazed to find nearly complete skeleton with many bones in life position

October 19, 2017

A remarkable new fossilized skeleton of a tyrannosaur discovered in the Bureau of Land Management’s Grand Staircase-Escalante National Monument (GSENM) in southern Utah was airlifted by helicopter Sunday, Oct 15, from a remote field site, and delivered to the Natural History Museum of Utah where it will be uncovered, prepared, and studied. The fossil is approximately 76 million years old and is most likely an individual of the species Teratophoneus curriei, one of Utah‘s ferocious tyrannosaurs that walked western North America between 66 and 90 million years ago during the Late Cretaceous Period.

“With at least 75 percent of its bones preserved, this is the most complete skeleton of a tyrannosaur ever discovered in the southwestern US,” said Dr. Randall Irmis, curator of paleontology at the Museum and associate professor in the Department of Geology and Geophysics at the University of Utah. “We are eager to get a closer look at this fossil to learn more about the southern tyrannosaur’s anatomy, biology, and evolution.”

GSENM Paleontologist Dr. Alan Titus discovered the fossil in July 2015 in the Kaiparowits Formation, part of the central plateau region of the monument. Particularly notable is that the fossil includes a nearly complete skull. Scientists hypothesize that this tyrannosaur was buried either in a river channel or by a flooding event on the floodplain, keeping the skeleton intact.

“The monument is a complex mix of topography — from high desert to badlands — and most of the surface area is exposed rock, making it rich grounds for new discoveries, said Titus. “And we’re not just finding dinosaurs, but also crocodiles, turtles, mammals, amphibians, fish, invertebrates, and plant fossils — remains of a unique ecosystem not found anywhere else in the world,” said Titus.

Although many tyrannosaur fossils have been found over the last one hundred years in the northern Great Plains region of the northern US and Canada, until relatively recently, little was known about them in the southern US. This discovery, and the resulting research, will continue to cement the monument as a key place for understanding the group’s southern history, which appears to have followed a different path than that of their northern counterparts.

This southern tyrannosaur fossil is thought to be a sub-adult individual, 12-15 years old, 17-20 feet long, and with a relatively short head, unlike the typically longer-snouted look of northern tyrannosaurs.

Collecting such fossils from the monument can be unusually challenging. “Many areas are so remote that often we need to have supplies dropped in and the crew hikes in,” said Irmis. For this particular field site, Museum and monument crews back-packed in, carrying all of the supplies they needed to excavate the fossil, such as plaster, water and tools to work at the site for several weeks. The crews conducted a three-week excavation in early May 2017, and continued work during the past two weeks until the specimen was ready to be airlifted out.

Irmis said with the help of dedicated volunteers, it took approximately 2,000-3,000 people hours to excavate the site and estimates at least 10,000 hours of work remain to prepare the specimen for research. “Without our volunteer team members, we wouldn’t be able to accomplish this work. We absolutely rely on them throughout the entire process,” said Irmis.

Irmis says that this new fossil find is extremely significant. Whether it is a new species or an individual of Teratophoneus, the new research will provide important context as to how this animal lived. “We’ll look at the size of this new fossil, it’s growth pattern, biology, reconstruct muscles to see how the animal moved, how fast could it run, and how it fed with its jaws. The possibilities are endless and exciting,” said Irmis.

During the past 20 years, crews from the Natural History Museum of Utah and GSENM have unearthed more than a dozen new species of dinosaurs in GSENM, with several additional species awaiting formal scientific description. Some of the finds include another tyrannosaur named Lythronax, and a variety of other, plant-eating, dinosaurs — among them duck-billed hadrosaurs, armored ankylosaurs, dome-headed pachycephalosaurs, and a number of horned dinosaurs, such as Utahceratops, Kosmoceratops, Nasutoceratops, and Machairoceratops. Other fossil discoveries include fossil plants, insect traces, snails, clams, fishes, amphibians, lizards, turtles, crocodiles, and mammals. Together, this diverse bounty of fossils is offering one of the most comprehensive glimpses into a Mesozoic ecosystem. Remarkably, virtually all of the dinosaur species found in GSENM appear to be unique to this area, and are not found anywhere else on Earth.

Advertisements

Some herbivorous dinosaurs really omnivorous?


This 2012 video from the USA says about itself:

Maiasaura: Learn About Dinosaurs with World Book’s Professor Nick

Maiasaura was a large plant-eating dinosaur noted for its nesting behavior. Its name means good mother lizard, though dinosaurs were not lizards. Evidence suggests that its hatchlings were completely dependent on their parents for food and protection. Maiasaura lived about 75 to 80 million years ago in the area of what is now Montana. It belonged to a group known as duckbilled dinosaurs or hadrosaurids. These dinosaurs ate plants using a beak that somewhat resembled a duck’s bill.

By Carolyn Gramling, 9:00am, September 21, 2017:

Shhhh! Some plant-eating dinos snacked on crunchy critters

Crustacean shells discovered in fossilized poop reveal diet secrets of ancient herbivores

Some dinosaurs liked to cheat on their vegetarian diet.

Based on the shape of their teeth and jaws, large plant-eating dinosaurs are generally thought to have been exclusively herbivorous. But for one group of dinosaurs, roughly 75-million-year-old poop tells another story. Their fossilized droppings, or coprolites, contained tiny fragments of mollusk and other crustacean

Mollusks and crustaceans are two different groups.

shells along with an abundance of rotten wood, researchers report September 21 in Scientific Reports. Eating the crustaceans as well as the wood might have given the dinosaurs an extra dose of nutrients during breeding season to help form eggs and nourish the embryos.

“Living herd animals do occasionally turn carnivore to fulfill a particular nutritional need,” says vertebrate paleontologist Paul Barrett of the Natural History Museum in London. “Sheep and cows are known to eat carcasses or bone when they have a deficiency in a mineral such as phosphorus or calcium, or if they’re pregnant or ill.” But the discovery that some plant-eating dinos also ate crustaceans is the first example of this behavior in an extinct herbivore, says Barrett, who was not involved in the new study.

Ten years ago, paleoecologist Karen Chin of the University of Colorado Boulder described finding large pieces of rotted wood in dino dung. The coprolites were within a layer of rock in Montana, known as the Two Medicine Formation, dating to between 80 million and 74 million years ago. That layer also contained numerous fossils of Maiasaura, a type of large, herbivorous duck-billed dinosaur, or hadrosaur (SN: 8/9/14, p. 20).

Chin wondered whether the wood itself was the dino’s real dietary target. “The coprolites in Montana were associated with the nesting grounds of the Maiasaura,” she says. “I suspected that the dinosaurs were after insects in the wood. But I never found any insects in the coprolites there.”

Her hunch wasn’t too far off. Now she’s found evidence of some kind of crustaceans in dino poop. The new evidence comes from an 860-meter-thick layer of rock in Utah known as the Kaiparowits Formation, which dates to between 76.1 million and 74 million years ago. Ten of the 15 coprolites that Chin and her team examined contained tiny fragments of shell that were scattered throughout the dung. They were too small to identify by species, and may have been crabs, insects or some other type of shelled animal, Chin says. Based on the scattering of shell fragments, the animals were certainly eaten along with the wood rather than being later visitors to the dung heap.

Since bones from hadrosaurs are especially abundant in the Kaiparowits Formation, Chin suspects those kinds of dinos deposited the dung. Other large herbivores, such as three-horned ceratopsians and armored ankylosaurs, also roamed the area (SN: 6/24/17, p. 4).

The crustacean diet cheat may have been a seasonal event, related perhaps to breeding to obtain extra nutrients, Chin and colleagues say.

But how often — or why — the dinosaurs ate the shelled critters is hard to prove from the fossil dung alone, Barrett says. Herbivore coprolites are rare in the fossil record because a diet of leaves and other green plant material doesn’t leave a lot of hard material to preserve (unlike bones in carnivore dung). Coprolites with crustaceans, on the other hand, are more likely to get fossilized — and that preferential preservation might make it appear that this behavior was more frequent than it actually was. “These kinds of things give neat snapshots of specific behaviors that those animals are doing at any one time,” he adds. “But it’s difficult to build that into a bigger picture.”

‘Prehistoric frog ate dinosaurs’


This 2014 video about Beelzebufo ampinga is called Prehistoric News : Devil Frog had Spikes and Armor.

From Sci-News.com:

Giant Prehistoric Frogs Ate Small Dinosaurs, Claim Scientists

Sep 20, 2017

Exceptionally large individuals of Beelzebufo ampinga, an extinct species of frog that lived in Madagascar during the Late Cretaceous epoch, about 68 million years ago, were capable of eating small dinosaurs, according to an international research team led by California State Polytechnic University scientists.

This conclusion comes from a study of the bite force of extant South American horned frogs (genus Ceratophrys).

“Unlike the vast majority of frogs which have weak jaws and typically consume small prey, horned frogs ambush animals as large as themselves — including other frogs, snakes, and rodents,” explained co-author Dr. Marc Jones, from the University of Adelaide and the South Australian Museum.

“And their powerful jaws play a critical role in grabbing and subduing the prey.”

Dr. Jones and co-authors from the United States, the United Kingdom, and Australia found that small horned frogs, with head width of about 1.8 inches (4.5 cm), can bite with a force of 30 newtons (N), or about 3 kg/6.6 lbs.

A scaling experiment, comparing bite force with head and body size, calculated that large horned frogs that are found in the tropical and subtropical moist lowland forests of South America, with a head width of up to 4 inches (10 cm), would have a bite force of almost 500 N. This is comparable to reptiles and mammals with a similar head size.

“This would feel like having 50 liters of water balanced on your fingertip,” explained lead author Professor Kristopher Lappin, of California State Polytechnic University.

“Many people find horned frogs hilarious because of their big heads and fat, round bodies,” said co-author Sean Wilcox, a PhD candidate at the University of California, Riverside.

“Yet, these predators have given us a rare opportunity to learn something more about the biology of a huge extinct frog.”

The team estimated the bite force of the extinct frog Beelzebufo ampinga may have had a bite up to 2,200 N, comparable to formidable mammalian predators such as wolves and female tigers.

“At this bite force, Beelzebufo ampinga would have been capable of subduing the small and juvenile dinosaurs that shared its environment,” Dr. Jones said.

“This is the first time bite force has been measured in a frog,” Professor Lappin said.

“And, speaking from experience, horned frogs have quite an impressive bite, and they tend not to let go.”

“The bite of a large Beelzebufo ampinga would have been remarkable, definitely not something I would want to experience firsthand.”

The study appears today in the journal Scientific Reports.

New plesiosaur species discovery in Germany


Skull reconstruction of Lagenanectes richterae. Credit: Jahn Hornung

From Uppsala University in Sweden:

New ancient sea reptile found in Germany, the earliest of its kind

August 28, 2017

A previously unrecognized 132 million-year-old fossilized sea monster from northern Germany has been identified by an international team of researchers. Findings published in the Journal of Vertebrate Paleontology.

The bizarre sea creature was a plesiosaur, an extinct long-necked aquatic reptile resembling the popular image of the Loch Ness monster, which dominated the seas during the Age of Dinosaurs.

The remains of the eight-meter-long skeleton were collected in 1964 by private fossil collectors. The perfectly preserved bones were rescued from heavy machinery excavating a clay-pit at Sarstedt near Hannover.

Despite being discovered nearly half a century ago, a group of international scientists was only recently invited to study the specimen by the Lower Saxony State Museum in Hannover. “It was an honor to be asked to research the mysterious Sarstedt plesiosaur skeleton” says Sven Sachs from the Natural History Museum in Bielefeld, Germany, and lead author on the study. “It has been one of the hidden jewels of the museum, and even more importantly, has turned out to be new to science.”

The new plesiosaur was named Lagenanectes richterae, literally meaning ‘Lagena swimmer’, after the medieval German name for the Leine River near Sarstedt. The species was named for Dr Annette Richter, Chief Curator of Natural Sciences at the Lower Saxony State Museum, who facilitated documentation of the fossil.

The skeleton of Lagenanectes includes most of the skull, which had a meshwork of long fang-like teeth, together with vertebrae, ribs and bones from the four flipper-like limbs.

“The jaws had some especially unusual features.” says Dr Jahn Hornung a palaeontologist based in Hamburg and co-author on the paper. “Its broad chin was expanded into a massive jutting crest, and its lower teeth stuck out sideways. These probably served to trap small fish and squid that were then swallowed whole.”

Internal channels in the upper jaws might have housed nerves linked to pressure receptors or electroreceptors on the outside of the snout that would have helped Lagenanectes to locate its prey.

The bones also showed evidence of chronic bacterial infection suggesting that the animal had suffered from a long-term disease that perhaps eventually claimed its life.

“The most important aspect of this new plesiosaur is that it is amongst the oldest of its kind” says Dr Benjamin Kear from the Museum of Evolution at Uppsala University in Sweden and senior author on the study. “It is one of the earliest elasmosaurs, an extremely successful group of globally distributed plesiosaurs that seem to have had their evolutionary origins in the seas that once inundated Western Europe.”

Elasmosaurs had spectacularly long necks — the longest of any vertebrate — including up to 75 individual vertebrae. Not all of the neck vertebrae of Lagenanectes were recovered but it is estimated that around 40 or 50 must have originally been present.

Elasmosaurs flourished during the Cretaceous period but went extinct with the dinosaurs 66 million years ago. Lagenanectes lived in a shallow sea that covered northern Germany around 132 million years ago. It thus predates the last elasmosaurs by nearly 70 million years.

The skull of Lagenanectes will be displayed as a centerpiece in the ‘Water Worlds’ exhibition at the Lower Saxony State Museum in Hannover.

A new study has shed light on the swimming style of plesiosaurs by creating a robot to mimic its movements: here.

New sauropod dinosaur discovery in Tanzania


This video says about itself:

24 August 2017

A titanosaur the size of a killer whale once stomped across Africa

A humongous “wide-necked” dinosaur — one that weighed as much as two cars — stomped across the landscape of prehistoric Africa during the Cretaceous period, a new study finds.

The 5-ton beast, a titanosaur (an herbivorous long-necked and long-tailed dinosaur) was tall; its head reached 13 feet (4 meters) in the air when its neck was extended. The dinosaur’s remains were found in rock in southwestern Tanzania dating between 100 million and 70 million years ago, the researchers said.

It’s not uncommon to unearth titanosaurs in South America, but it’s rare to find the giant dinosaurs in Africa, making the newly identified creature a remarkable find, the researchers said.

Researchers named the titanosaur Shingopana songwensis, which they said was 26 feet (8 meters) long, or about the size of an orca whale. Its genus name means “wide neck” in Swahili, whereas “shingo” and “pana” are the Swahili words for “neck” and “wide,” respectively, in reference to the giant’s “bulbous” neck vertebra, the researchers wrote in the study. The species name honors the Songwe region of the Great Rift Valley in Tanzania, where the dinosaur was first discovered in 2002, and excavated in the following years.

From the National Science Foundation in the USA:

New species of sauropod dinosaur discovered in Tanzania

Fossil remains recovered from 70 to 100 million-year-old rocks in southwestern Tanzania

August 25, 2017

Paleontologists have identified a new species of titanosaurian dinosaur. The research is reported in a paper published this week in the Journal of Vertebrate Paleontology and is funded by the National Science Foundation (NSF).

The new species is a member of the gigantic, long-necked sauropods. Its fossil remains were recovered from Cretaceous Period (70-100 million years ago) rocks in southwestern Tanzania.

Titanosaur skeletons have been found worldwide, but are best known from South America. Fossils in this group are rare in Africa.

The new dinosaur is called Shingopana songwensis, derived from the Swahili term “shingopana” for “wide neck”; the fossils were discovered in the Songwe region of the Great Rift Valley in southwestern Tanzania.

Part of the Shingopana skeleton was excavated in 2002 by scientists affiliated with the Rukwa Rift Basin Project, an international effort led by Ohio University Heritage College of Osteopathic Medicine researchers Patrick O’Connor and Nancy Stevens.

Additional portions of the skeleton — including neck vertebrae, ribs, a humerus and part of the lower jaw — were later recovered.

“There are anatomical features present only in Shingopana and in several South American titanosaurs, but not in other African titanosaurs,” said lead paper author Eric Gorscak, a paleontologist at the Field Museum of Natural History in Chicago. “Shingopana had siblings in South America, whereas other African titanosaurs were only distant cousins.”

The team conducted phylogenetic analyses to understand the evolutionary relationships of these and other titanosaurs.

They found that Shingopana was more closely related to titanosaurs of South America than to any of the other species currently known from Africa or elsewhere.

“This discovery suggests that the fauna of northern and southern Africa were very different in the Cretaceous Period,” said Judy Skog, a program director in NSF’s Division of Earth Sciences, which supported the research. “At that time, southern Africa dinosaurs were more closely related to those in South America, and were more widespread than we knew.”

Shingopana roamed the Cretaceous landscape alongside Rukwatitan bisepultus, another titanosaur the team described and named in 2014.

“We’re still only scratching the surface of understanding the diversity of organisms, and the environments in which they lived, on the African continent during the Late Cretaceous,” said O’Connor.

During the tectonically active Cretaceous Period, southern Africa lost Madagascar and Antarctica as they split off to the east and south, followed by the gradual northward “unzipping” of South America.

Northern Africa maintained a land connection with South America, but southern Africa slowly became more isolated until the continents completely separated 95-105 million years ago. Other factors such as terrain and climate may have further isolated southern Africa.

Paper co-author Eric Roberts of James Cook University in Australia studied the paleo-environmental context of the new discovery.

The bones of Shingopana, he found, were damaged by the borings of ancient insects shortly after death.

Roberts said that “the presence of bone-borings provides a CSI-like opportunity to study the skeleton and reconstruct the timing of death and burial, and offers rare evidence of ancient insects and complex food webs during the age of the dinosaurs.”

The study was also funded by the National Geographic Society, Jurassic Foundation, Paleontological Society, Ohio University Student Enhancement Award, Ohio University Original Work Grant, Ohio University Heritage College of Osteopathic Medicine, Ohio University Office of the Vice President for Research and Creative Activity, and James Cook University.

See also here.

Did oviraptor dinosaurs behave like birds?


This 24 August 2017 video is called New discovery of dinosaurs suggests: new species [roosting] together like modern birds.

From the Society of Vertebrate Paleontology:

New dinosaur discovery suggests new species roosted together like modern birds

August 24, 2017

The Mongolian Desert has been known for decades for its amazing array of dinosaurs, immaculately preserved in incredible detail and in associations that give exceedingly rare glimpses at behavior in the fossil record. New remains from this region suggest an entirely unknown behavior for bird-like dinosaurs about 70 million years ago. At least some dinosaurs likely roosted together to sleep, quite possibly as a family, much like many modern birds do today. Gregory Funston, Ph.D. Candidate at the University of Alberta, will present the team’s research findings at the annual meeting of the Society of Vertebrate Paleontology, held this year in Calgary, Alberta (Canada) on Friday, Aug. 25th.

This new evidence for dinosaur roosting stems from a confiscated fossil block that was illegally exported from Mongolia, which preserved the amazing remains of three juvenile dinosaurs known as oviraptorids (part of the bird line of dinosaur evolution). These three dinosaurs represent the same species that were roughly the same age, preserved in a sleeping posture, so close to each other that they would have been touching in life. Known as “communal roosting,” this behavior is seen in many birds today including chickens and pigeons. The specimen luckily made its way into the hands of researchers currently led by Gregory Funston of the University of Alberta, along with his advisor Dr. Philip Currie (also of the University of Alberta) and the Institute of Paleontology and Geology of Mongolia (based in Ulaanbaatar). Regarding the finding, Funston said, “It’s a fantastic specimen. It’s rare to find a skeleton preserved in life position, so having two complete individuals and parts of a third is really incredible.”

The three juvenile oviraptors had several features that indicated they belonged to a whole new species. Other fossils found in Mongolia also seem to belong to this new species, and further flesh out the life history of these animals. The notable head crest is present even at a young age, but the dinosaurs would have had gradually shorter tails as they aged, and some of their bones fused across their lifetime. Their head crests and tails have been argued to represent sexual display features used in mating, somewhat similar to modern peacocks or turkeys. Funston added “The origins of communal roosting in birds are still debated, so this specimen will provide valuable information on roosting habits in bird-line theropods.”

Dinosaur age damselfly named after David Attenborough


This video says about itself:

15 August 2017

Damselfly thought to be 100 MILLION years old named after Sir David Attenborough

TV naturalist Sir David Attenborough was last night said to be delighted after a prehistoric insect was named in his honour. Prof. Jarzembowski said: “Dragonflies in amber are extremely rare and the recent discoveries by my Chinese colleagues are a new window on the past. “It is tradition in taxonomy – the naming of a new species – to contact the person concerned. “Sir David was delighted because he is not only interested in the story of amber, but also a president of the British Dragonfly Society.”

Lead author Daran Zheng from the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, commented: “Mesosticta davidattenboroughi is quite unique because we have uncovered a new species.” The naming of the species was revealed in the Journal of Systematic Palaeontology.

Mesosticta davidattenboroughi is just the latest species to be named after Sir David whose wildlife documentaries have enchanted the world. Others include a carnivorous plant, a butterfly, a tiny spider, a Peruvian frog and a Namibian lizard. Among the prehistoric species named after him are a Mesozoic reptile, a fossilised armoured fish and a 430 million-year-old crustacean.

From ScienceDaily:

David Attenborough gains new species namesake

August 16, 2017

A new species of damselfly from the Cretaceous period has been named after the iconic naturalist and TV presenter Sir David Attenborough.

The new discovery, described in detail in the Journal of Systematic Palaeontology, was made in the Hukawng Valley of Kachin Province in Myanmar. The fossil was found in a piece of mid-Cretaceous Burmese amber. The full scientific name for the new species, belonging to a group more commonly known as shadowdamsels, is Mesosticta davidattenboroughi. Researchers decided to name the new species after David Attenborough because of his long-standing appreciation of dragonflies, and to celebrate his recent 90th birthday.

The fossil itself is extremely well preserved as it is encased in yellow transparent amber and includes a complete set of wings. With the aid of photo technology, researchers were able to digitally enhance and build a clear three-dimensional picture of the new species, showing that it differed from previously described fossils, notably in the shorter wing length.

Lead author Daran Zheng from the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, commented, “Mesosticta davidattenboroughi is quite unique because we have uncovered a new species and it confirms the previous attribution of Mesosticta to the Platystictidae. It is the first fossil group of modern platystictid damselflies and documents the appearance of Platystictidae as early as mid-Cretaceous.”

The discovery of insect remains in amber is not uncommon, however this particular family of damselflies are much less frequently found and their fossil record is poor compared to many other families making the discovery especially unusual.

Mesosticta davidattenboroughi joins a long list of animals which have been named after Sir David Attenborough, including a weevil and fossil species of a plesiosaur and a fish.

This research was supported by the National Natural Science Foundation of China, Youth Innovation Promotion Association of the Chinese Academy of Sciences and the HKU Seed Funding Program for Basic Research.

See also here. And here.