Humboldt squids video, by David Attenborough


This 30 March 2020 video says about itself:

2 Metre Long Humboldt Squid Hunt In Packs | Life | BBC Earth

Highly intelligent, with powerful tentacles and a razor-sharp beak – the Humboldt squid is a true terror of the deep. This 2-metre long beast has a reputation as a man-eater, and it’s easy to see why.

Narrated by David Attenborough.

Squid, new discoveries


This 2017 video says about itself:

Strange and unusual life inhabits the plankton-rich seas of the underwater kelp forests. Watch this short video from BBC natural history series The Blue Planet to see the mating habits of amazing colour changing squid and the weird movements of the aptly named handfish.

From Stanford University in the USA:

How squid communicate in the dark

March 24, 2020

Summary: Researchers begin to reveal how social squid communicate in the near-blackness of the deep sea.

In the frigid waters 1,500 feet below the surface of the Pacific Ocean, hundreds of human-sized Humboldt squid feed on a patch of finger-length lantern fish. Zipping past each other, the predators move with exceptional precision, never colliding or competing for prey.

How do they establish such order in the near-darkness of the ocean’s twilight zone?

The answer, according to researchers from Stanford University and the Monterey Bay Aquarium Research Institute (MBARI) may be visual communication. Like the illuminated words on an e-book reader, these researchers suggest that the squid’s ability to subtly glow — using light-producing organs in their muscles — can create a backlight for shifting pigmentation patterns on their skin. The creatures may be using these changing patterns to signal one another.

The research is published March 23 in the journal Proceedings of the National Academy of Sciences.

“Many squid live in fairly shallow water and don’t have these light-producing organs, so it’s possible this is a key evolutionary innovation for being able to inhabit the open ocean,” said Benjamin Burford, a graduate student in biology in the School of Humanities and Sciences at Stanford and lead author of the paper. “Maybe they need this ability to glow and display these pigmentation patterns to facilitate group behaviors in order to survive out there.”

Seeing the deep sea

Humboldt squid behavior is nearly impossible to study in captivity, so researchers must meet them where they live. For this research, Bruce Robison of MBARI, who is senior author of the paper, captured footage of Humboldt squid off the coast of California using remotely operated vehicles (ROVs), or unmanned, robotic submarines.

While the ROVs could record the squid’s skin patterning, the lights the cameras required were too bright to record their subtle glow, so the researchers couldn’t test their backlighting hypothesis directly. Instead, they found supporting evidence for it in their anatomical studies of captured squid.

Using the ROV footage, the researchers analyzed how individual squid behaved when they were feeding versus when they were not. They also paid attention to how these behaviors changed depending on the number of other squid in the immediate area — after all, people communicate differently if they are speaking with friends versus a large audience.

The footage confirmed that squid’s pigmentation patterns do seem to relate to specific contexts. Some patterns were detailed enough to imply that the squid may be communicating precise messages — such as “that fish over there is mine.” There was also evidence that their behaviors could be broken down into distinct units that the squid recombine to form different messages, like letters in the alphabet. Still, the researchers emphasize that it is too early to conclude whether the squid communications constitute a human-like language.

“Right now, as we speak, there are probably squid signaling each other in the deep ocean,” said Burford, who is affiliated with the Denny lab at Stanford’s Hopkins Marine Station. “And who knows what kind of information they’re saying and what kind of decisions they’re making based on that information?”

Although these squid can see well in dim light, their vision is probably not especially sharp, so the researchers speculated that the light-producing organs help facilitate the squid’s visual communications by boosting the contrast for their skin patterning. They investigated this hypothesis by mapping where these light organs are located in Humboldt squid and comparing that to where the most detailed skin patterns appear on the creatures.

They found that the areas where the illuminating organs were most densely packed — such as a small area between the squid’s eyes and the thin edge of their fins — corresponded to those where the most intricate patterns occurred.

Familiar aliens

In the time since the squid were filmed, ROV technology has advanced enough that the team could directly view their backlighting hypothesis in action the next time the squid are observed in California. Burford would also like to create some sort of virtual squid that the team could project in front of real squid to see how they respond to the cyber-squid’s patterns and movements.

The researchers are thrilled with what they have found so far but eager to do further research in the deep sea. Although studying the inhabitants of the deep sea where they live can be a frustratingly difficult endeavor, this research has the potential to inform a new understanding of squid as crazy lifeforms living in this alien world but we have a lot in common — they live in groups, they’re social, they talking of how life functions.

“We are so like another,” Burford said. “Researching their behavior and that of other residents of the deep sea is important for learning how life may exist in alien environments, but it also tells us more generally about the strategies used in extreme environments on our own planet.”

This work was funded by the David and Lucile Packard Foundation and the Department of Biology at Stanford.

Revealing yet another super-power in the skillful squid, scientists have discovered that squid massively edit their own genetic instructions not only within the nucleus of their neurons, but also within the axon — the long, slender neural projections that transmit electrical impulses to other neurons. This is the first time that edits to genetic information have been observed outside of the nucleus of an animal cell: here.

Squid camouflage, new research


This 2015 video says about itself:

Octopuses and cuttlefish are masters of underwater camouflage, blending in seamlessly against a rock or coral. But squid have to hide in the open ocean, mimicking the subtle interplay of light, water, and waves. How do they do it?

From the University of Queensland in Australia:

MRI-based mapping of the squid brain

January 28, 2020

We are closer to understanding the incredible ability of squid to instantly camouflage themselves, thanks to research from The University of Queensland.

Dr Wen-Sung Chung and Professor Justin Marshall, from UQ’s Queensland Brain Institute, completed the first MRI-based mapping of the squid brain in 50 years to develop an atlas of neural connections.

“This the first time modern technology has been used to explore the brain of this amazing animal, and we proposed 145 new connections and pathways, more than 60 per cent of which are linked to the vision and motor systems,” Dr Chung said.

“The modern cephalopods, a group including octopus, cuttlefish and squid, have famously complex brains, approaching that of a dog and surpassing mice and rats, at least in neuronal number.

“For example, some cephalopods have more than 500 million neurons, compared to 200 million for a rat and 20,000 for a normal mollusc.”

Some examples of complex cephalopod behaviour include the ability to camouflage themselves despite being colourblind, count, recognise patterns, problem solve and communicate using a variety of signals.

“We can see that a lot of neural circuits are dedicated to camouflage and visual communication. Giving the squid a unique ability to evade predators, hunt and conspecific communicate with dynamic colour changes.”

Dr Chung said the study also supported emerging hypotheses on convergent evolution — when organisms independently evolve similar traits — of cephalopod nervous systems with parts of the vertebrate central nervous system.

“The similarity with the better-studied vertebrate nervous system allows us to make new predictions about the cephalopod nervous system at the behavioural level,” he said.

“For example, this study proposes several new networks of neurons in charge of visually-guided behaviours such as locomotion and countershading camouflage — when squid display different colours on the top and bottom of their bodies to blend into the background whether they are being viewed from above or below.”

The team’s ongoing project involves understanding why different cephalopod species have evolved different subdivisions of the brain.

“Our findings will hopefully provide evidence to help us understand why these fascinating creatures display such diverse behaviour and very different interactions.”

The study involved using techniques such as MRI on the brain of the reef squid Sepioteuthis lessoniana, and was published in the journal iScience.

How Jurassic pterosaurs fed, new research


This video is called TRILOGY OF LIFE – Walking with Dinosaurs – “Ramphorhynchus“.

By John Pickrell, January 27, 2020 at 5:00 am:

A squid fossil offers a rare record of pterosaur feeding behavior

A tooth embedded in a squid fossil tells a story of a battle at sea with the flying reptile

A fossil of a squid with a pterosaur tooth embedded in it offers extraordinary evidence of a 150-million-year-old battle at sea. While many pterosaur fossils containing fish scales and bones in their stomachs have revealed that some of these flying reptiles included fish in their diet, the new find from Germany is the first proof that pterosaurs also hunted squid.

The fossil was excavated in 2012 in the Solnhofen Limestone, near Eichstätt in Bavaria, where many Jurassic Period fossils of pterosaurs, small dinosaurs and the earliest known bird, Archaeopteryx, have been found. The region’s environment at the time was something like the Bahamas today, with low-lying islands dotting shallow tropical seas.

The embedded tooth fits the right size and shape for the pterosaur Rhamphorhynchus, paleontologists report online January 27 in Scientific Reports. They argue that the tooth was left by a pterosaur that swooped to the ocean surface to snap up the 30-centimeter-long squid from the extinct Plesioteuthis genus, but was unsuccessful, possibly because the squid was too large or too far down in the water column for the predator to manage.

“The Plesioteuthis squid wrestled it off and escaped, breaking at least one tooth off the pterosaur, which became lodged in [the squid’s] mantle,” says Jordan Bestwick, a paleontologist at the University of Leicester in England. “This fossil is important in helping us understand the dietary range of Rhamphorhynchus, and tells us about its hunting behavior.”

The fossil itself is unique, according to pterosaur researcher Taíssa Rodrigues at the Federal University of Espírito Santo in Vitorio, Brazil, who was not involved in the study. “It is very rare to find predator-prey interactions that include pterosaurs,” she says. “In the few cases we do have, pterosaurs were the prey of large fish. So it is great to see this the other way around.”

Paleontologist Michael Habib of the University of Southern California in Los Angeles says he suspects the squid was far too large for the pterosaur to haul out of the water. “The pterosaur was lucky that the tooth broke off,” says Habib, who was not involved with the study. “A squid of that size could probably have pulled it under.”

Giant squid in Gulf of Mexico, video


This 22 June 2019 video says about itself:

Amazing close-up footage of elusive giant squid

Scientists get a rare close encounter with a giant squid in the Gulf of Mexico. The monster of the deep comes in for a closer look at their underwater camera. It’s estimated this particular specimen was up to 3.7 metres long. Report by Jeremy Barnes.

From National Geographic:

Watch first-ever video of a giant squid in U.S. waters

NOAA scientists filmed the 10- to 12-foot squid in the the Gulf of Mexico

By Jill Langlois

PUBLISHED

When Edie Widder saw the giant squid come into view for the first time, its tentacles splayed as it tried to attack the electronic jellyfish lure in front of the underwater camera, she felt a sense of vindication.

After years of trying to develop ways to observe deep-sea animals, the CEO and senior scientist at the Florida-based Ocean Research and Conservation Association (ORCA), had finally figured out the key. The special camera system she developed, called Medusa, emits a red light invisible to most creatures living in “midnight zone,” some 3,280 feet below the ocean’s surface, where it’s pitch black.

Squid lays eggs, video


This 17 May 2019 video shows five common squid, four males, one female dancing around sticks put there by divers. At the end of the video, the female deposits eggs on one of the sticks.

Diver Mirjam van der Sanden made this video in the Oosterschelde estuary in the Netherlands.

Sperm whale hunts squid, video


This video says about itself:

Rare Footage of a Sperm Whale Hunting a Squid

For decades, scientists and filmmakers have been trying to capture footage of the world’s largest active predator hunting 3,000 feet below the surface, deep in the dark depths of the ocean. Witness a sperm whale echolocate its prey with intense clicking and then successfully hunt down what is believed to be a squid.