Egyptian fossil relatives of Madagascar bats discovered


This video from the USA says about itself:

26 Sep 2012

Dr. Nancy Simmons specializes in the morphology and evolutionary biology of bats (Chiroptera). Together with several collaborators, she is developing a data set of morphological characters scored in species representing all major clades of bats. These data include new information gained from high-resolution CT scans of rare bats and are being combined with DNA sequence data to develop a robust higher-level phylogeny for Chiroptera.

With collaborators, she is doing an in-depth study of the evolution of megabats — flying foxes and their relatives — using both molecular and morphological data. Dr. Simmons is also working with an expert on echolocation behavior to develop a method for coding features of echolocation calls for phylogenetic analysis.

From the American Museum of Natural History in the USA:

Sucker-Footed Bat Fossils Broaden the Bat Map

by AMNH on 02/04/2014 05:00 pm

Today, Madagascar sucker-footed bats are found only on their island home, but new research from the American Museum of Natural History and Duke University shows that wasn’t always the case. The discovery of two extinct relatives in northern Egypt suggests the unusual creatures, which evolved sticky footpads to roost on slick surfaces, are primitive members of a group of bats that evolved in Africa and ultimately went on to flourish in South America.

A team of researchers described the two bat species from several sets of fossilized jawbones and teeth unearthed in the Sahara. The findings, reported on February 4 in the journal PLOS ONE, represent the first formal description of the family in the fossil record and show the sucker-footed bat family to be at least 36 million years older than previously known.

“We’ve assumed for a long time that they were an ancient lineage based on DNA sequence studies that have placed them close to very old groups in the bat family tree,” said Nancy Simmons, co-author on the study and a curator in the Department of Mammalogy.

But until now, scientists lacked any fossil evidence to confirm it.

Today, the sucker-footed bats consist of two species, Myzopoda aurita (see images of these bats here) and M. schliemanni, endemic to Madagascar. In contrast to almost all other bats, they don’t cling upside-down to cave ceilings or branches. Sucker-footed bats roost head-up, often in the furled leaves of the traveler’s palm, a plant in the bird-of-paradise family. To stick to such a smooth surface, the bats evolved cup-like pads on their wrists and ankles. Scientists previously suspected the pads held the bats up by suction, but recent research has demonstrated the bats instead rely on wet adhesion, like a tree frog.

The two extinct species, Phasmatonycteris phiomensis and P. butleri, date to 30 and 37 million years ago, respectively, when the environment was drastically different. Northern Africa was more tropical, said Dr. Simmons, and home to a diverse range of mammals, including primates and early members of the elephant family.

“The habitat was probably fairly forested, and there was likely a proto-Nile River, a big river that led into the ancient Tethys Ocean,” said Gregg Gunnell, director of the Duke University Lemur Center‘s Division of Fossil Primates and a co-author on the paper.

The fossilized teeth imply that, like their living relatives, the ancient bats fed on insects. It’s impossible to know from the fossils if the extinct species had already evolved their characteristic sucker-feet, but the teeth shed light on another aspect of bat evolution. The presence of sucker-footed bats in Africa at least 37 million years ago supports the theory that this family is one of the most primitive members of a lineage that now dominates South America.

From vampires to fruit- and nectar-eaters to carnivores, the majority of South America’s bats belong to one large superfamily, known as Noctilionoidea.

“We think that the superfamily originated in Africa and moved eastward as Gondwana was coming apart,” Gunnell said. “These bats migrated to Australia, then actually went through Antarctica and up into South America using an ice-free corridor that connected the three continents until about 26 million years ago.”

According to this hypothesis, the sucker-footed bat fossils showed up right where scientists expected to find them: at the literal and figurative base of the Noctilionoidea family tree.

“Now, we can unambiguously link them through Africa,” Simmons said.

You can read the scientific paper here.

Like Darwin’s Finches, But Weirder, Bat Faces Showcase Amazing Adaptations: here.

Enhanced by Zemanta