Intelligent bumblebees can learn to pull strings

This video says about itself:

Social learning and cultural transmission in bees

Footage shows a pair of bees (the seeded demonstrator and an observer) tested with the string pulling task in Colony 8. The red dot indicates the seeded demonstrator. The observer has not learned string pulling yet but has already been tested three times in paired foraging bouts. The demonstrator lands at the edge of the table, repositions herself in front of the string, and starts pulling immediately.

The observer is first attracted to the blue flower and lands on top of the table. The observer subsequently flies to the demonstrator, lands at her side, and walks to the nearby flower and string. She walks along the protruding string, reaches the table edge, and moves sideways. She notices the demonstrator and walks to her side, moving around her whilst the demonstrator is pulling, always in close contact.

The observer touches the string a few times but does not grasp it. The demonstrator eventually extracts the blue disk and steps onto it. The observer copies the demonstrator. They both slide the flower from under the table and obtain the reward.

Once the first pulled flower is depleted, the demonstrator moves to the nearest flower and pulls the string. The observer stays on the extracted flower for a short period, circling, probing the emptied inverted cap before noticing the demonstrator drinking from a second flower and joining her. In a similar way, once the second pulled flower is emptied, the demonstrator moves and pulls a third flower and the observer joins her. Her crop filled up, the demonstrator flies back to the colony.

From PLOS Biology:

Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect

October 4, 2016


Social insects make elaborate use of simple mechanisms to achieve seemingly complex behavior and may thus provide a unique resource to discover the basic cognitive elements required for culture, i.e., group-specific behaviors that spread from “innovators” to others in the group via social learning. We first explored whether bumblebees can learn a nonnatural object manipulation task by using string pulling to access a reward that was presented out of reach. Only a small minority “innovated” and solved the task spontaneously, but most bees were able to learn to pull a string when trained in a stepwise manner.

In addition, naïve bees learnt the task by observing a trained demonstrator from a distance. Learning the behavior relied on a combination of simple associative mechanisms and trial-and-error learning and did not require “insight”: naïve bees failed a “coiled-string experiment,” in which they did not receive instant visual feedback of the target moving closer when tugging on the string.

In cultural diffusion experiments, the skill spread rapidly from a single knowledgeable individual to the majority of a colony’s foragers. We observed that there were several sequential sets (“generations”) of learners, so that previously naïve observers could first acquire the technique by interacting with skilled individuals and, subsequently, themselves become demonstrators for the next “generation” of learners, so that the longevity of the skill in the population could outlast the lives of informed foragers. This suggests that, so long as animals have a basic toolkit of associative and motor learning processes, the key ingredients for the cultural spread of unusual skills are already in place and do not require sophisticated cognition.

Author Summary

Social insects make use of simple mechanisms to achieve many seemingly complex behaviors and thus may be able to provide a unique resource for uncovering the basic cognitive elements required for culture. Here, we first show that bumblebees can be trained to pull a string to access a reward, but most could not learn on their own. Naïve bees learned how to pull strings by observing trained demonstrators from a distance.

Learning the behavior through observation relied on bees paying attention to both the string and the position of the trained demonstrator bee while pulling the string. We then tested whether bees could pass this information to others during a semi-natural situation involving several colonies. We found that once one bee knew how to string pull, over time, most of the foraging bees learned from the initially trained bee or from bees who had learned from the trained bee, even after the initial demonstrator was no longer available. These results suggest that learning a nonnatural task in bumblebees can spread culturally through populations.

These bumblebees were Bombus terrestris, large earth bumblebees.

Primitive signs of emotions spotted in sugar-buzzed bumblebees. After a treat, insects appeared to have rosier outlooks. By Emily Underwood, 2:00pm, September 29, 2016: here.

5 thoughts on “Intelligent bumblebees can learn to pull strings

  1. Pingback: Neonicotinoids threaten animals | Dear Kitty. Some blog

  2. Pingback: Bumblebee recovers by honey | Dear Kitty. Some blog

  3. Pingback: Dutch national bee count, Top Ten, update | Dear Kitty. Some blog

  4. Pingback: Red mason bee-bumblebee queen conflict | Dear Kitty. Some blog

  5. Pingback: Birds and insects of De Horsten woodland | Dear Kitty. Some blog

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.