Cephalopods profiting from climate change


This 2013 video says about itself:

King of camouflage – Cuttlefish (Documentary)

Cuttlefish are marine animals of the order Sepiida. They belong to the class Cephalopoda, which also includes squid, octopodes, and nautiluses. Cuttlefish have a unique internal shell, the cuttlebone. Despite their name, cuttlefish are not fish but molluscs.

From Current Biology:

Global proliferation of cephalopods

23 May 2016

Summary

Human activities have substantially changed the world’s oceans in recent decades, altering marine food webs, habitats and biogeochemical processes. Cephalopods (squid, cuttlefish and octopuses) have a unique set of biological traits, including rapid growth, short lifespans and strong life-history plasticity, allowing them to adapt quickly to changing environmental conditions.

There has been growing speculation that cephalopod populations are proliferating in response to a changing environment, a perception fuelled by increasing trends in cephalopod fisheries catch. To investigate long-term trends in cephalopod abundance, we assembled global time-series of cephalopod catch rates (catch per unit of fishing or sampling effort). We show that cephalopod populations have increased over the last six decades, a result that was remarkably consistent across a highly diverse set of cephalopod taxa.

Positive trends were also evident for both fisheries-dependent and fisheries-independent time-series, suggesting that trends are not solely due to factors associated with developing fisheries. Our results suggest that large-scale, directional processes, common to a range of coastal and oceanic environments, are responsible. This study presents the first evidence that cephalopod populations have increased globally, indicating that these ecologically and commercially important invertebrates may have benefited from a changing ocean environment.

Octopus, squid, and cuttlefish are famous for engaging in complex behavior, from unlocking an aquarium tank and escaping to instantaneous skin camouflage to hide from predators. A new study suggests their evolutionary path to neural sophistication includes a novel mechanism: Prolific RNA editing at the expense of evolution in their genomic DNA: here. And here.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.