Brazilian toads can eat venomous scorpions


This 19 March 2020 video says about itself:

Brazilian toads that eat scorpions can survive the venom of 10 stings

Although anecdotal reports have suggested toads prey on scorpions, the behaviour hasn’t been studied before.

In experiments, researchers gave ten toads the opportunity to eat two poisonous yellow scorpions each. Seven of the toads ate both scorpions, while two ate just one arachnid, and another toad failed to catch any.

Before swallowing, the toads use their mouths and front legs move the scorpion into position. Slow-motion footage suggested that some toads were stung inside the mouth but no symptoms were observed.

Read more here.

Scorpion fluorescence may help against parasites


This 2016 video from the USA says about itself:

Finding Glow-in-the-Dark Scorpions | United States of Animals

In Arizona’s Sonoran Desert, daring tourists can get up close and personal with giant hairy scorpions.

From the American Chemical Society in the USA:

Scorpions make a fluorescent compound that could help protect them from parasites

March 4, 2020

Most scorpions glow a blue-green color when illuminated by ultraviolet light or natural moonlight. Scientists aren’t sure how this fluorescence benefits the creatures, but some have speculated that it acts as a sunscreen, or helps them find mates in the dark. Now, researchers reporting in ACS’ Journal of Natural Products have identified a new fluorescent compound from scorpion exoskeletons. The team says that the compound could protect these arachnids from parasites.

More than 60 years ago, scientists first recognized scorpions‘ propensity to glow under UV light. Until now, only two fluorescent compounds, β-carboline and 7-hydroxy-4-methylcoumarin, had been identified in scorpions’ hard outer shell, or exoskeleton. Masahiro Miyashita and colleagues wondered if there might be other fluorescent molecules with different chemical properties that were missed in previous studies.

To find out, the researchers extracted compounds from molted exoskeletons of the scorpion Liocheles australasiae, using chemical conditions different from those used in prior experiments. They purified the compound showing the most intense fluorescence and identified its structure, which was a phthalate ester previously shown to have antifungal and anti-parasitic properties in other organisms. This finding suggests that the new molecule, which the researchers found in several additional scorpion species, could help guard against parasitic infections in these creatures. Compared with the two previously identified fluorescent compounds, the new molecule likely contributes more weakly to scorpion fluorescence, the scientists say.

Scientists have identified a tiny protein in scorpion venom that rapidly accumulates in joint cartilage. Then they linked these mini-proteins with steroids to reverse inflammation in rats with arthritis. The researchers found that the drugs concentrated in the joints, potentially avoiding the body-wide toxicities and infection risks caused by nontargeted steroid treatment: here.

Scorpions raising young in Alhambra, Spain


This 6 February 2020 video from Spain says about itself:

Female Scorpions Face a Backbreaking Challenge to Raise Young

During the day, the scorpions of Alhambra find shelter underground to avoid the heat, only venturing out at night to hunt. If it’s a female scorpion with young, her task is made all the more challenging.

Gingko trees, scorpions help sick people


This 2011 video is called Southern Black Rock Scorpions mating (Urodacus manicatus).

From the University of California – San Francisco in the USA:

Scorpion toxin that targets ‘wasabi receptor‘ may help solve mystery of chronic pain

August 22, 2019

Researchers at UC San Francisco and the University of Queensland have discovered a scorpion toxin that targets the “wasabi receptor,” a chemical-sensing protein found in nerve cells that’s responsible for the sinus-jolting sting of wasabi and the flood of tears associated with chopping onions. Because the toxin triggers a pain response through a previously unknown mechanism, scientists think it can be used as a tool for studying chronic pain and inflammation, and may eventually lead to the development of new kinds of non-opioid pain relievers.

The scientists isolated the toxin, a short protein (or peptide) that they dubbed the “wasabi receptor toxin” (WaTx), from the venom of the Australian Black Rock scorpion. The discovery came as the researchers were conducting a systematic search for compounds in animal venom that could activate, and therefore be used to probe and study, the wasabi receptor — a sensory protein officially named TRPA1 (pronounced “trip A1”) that’s embedded in sensory nerve endings throughout the body. When activated, TRPA1 opens to reveal a channel that allows sodium and calcium ions to flow into the cell, which can induce pain and inflammation.

“Think of TRPA1 as the body’s ‘fire alarm’ for chemical irritants in the environment,” said John Lin King, a doctoral student in UCSF’s Neuroscience Graduate Program and lead author of a study published August 22, 2019 in Cell, which describes the toxin and its surprising mode of action. “When this receptor encounters a potentially harmful compound — specifically, a class of chemicals known as ‘reactive electrophiles,’ which can cause significant damage to cells — it is activated to let you know you’re being exposed to something dangerous that you need to remove yourself from.”

Cigarette smoke and environmental pollutants, for example, are rich in reactive electrophiles which can trigger TRPA1 in the cells that line the surface of the body’s airway, which can induce coughing fits and sustained airway inflammation. The receptor can also be activated by chemicals in pungent foods like wasabi, onions, mustard, ginger and garlic — compounds that, according to Lin King, may have evolved to discourage animals from eating these plants. WaTx appears to have evolved for the same reason.

Though many animals use venom to paralyze or kill their prey, WaTx seems to serve a purely defensive purpose. Virtually all animals, from worms to humans, have some form of TRPA1. But the researchers found that WaTx can only activate the version found in mammals, which aren’t on the menu for Black Rock scorpions, suggesting that the toxin is mainly used to ward off mammalian predators.

“Our results provide a beautiful and striking example of convergent evolution, whereby distantly related life forms — plants and animals — have developed defensive strategies that target the same mammalian receptor through completely distinct strategies,” said David Julius, PhD, professor and chair of UCSF’s Department of Physiology, and senior author of the new study.

But what the researchers found most interesting about WaTx was its mode of action. Though it triggers TRPA1, just as the compounds found in pungent plants do — and even targets the very same site on that receptor — the way it activates the receptor was novel and unexpected.

Black rock scorpion venom

First, WaTx forces its way into the cell, circumventing the standard routes that place strict limits on what’s allowed in and out. Most compounds, from tiny ions to large molecules, are either ingested by the cell through a complex process known as “endocytosis”, or they gain entry by passing through one of the many protein channels that stud the cell’s surface and act as gatekeepers.

But WaTx contains an unusual sequence of amino acids that allows it to simply penetrate the cell’s membrane and pass right through to the cell’s interior. Few other proteins are capable of the same feat. The most famous example is an HIV protein called Tat, but surprisingly, WaTx contains no sequences similar to those found in Tat or in any other protein that can pass through the cell’s membrane.

“It was surprising to find a toxin that can pass directly through membranes. This is unusual for peptide toxins,” Lin King said. “But it’s also exciting because if you understand how these peptides get across the membrane, you might be able to use them to carry things — drugs, for example — into the cell that can’t normally get across membranes.”

Once inside the cell, WaTx attaches itself to a site on TRPA1 known as the “allosteric nexus,” the very same site targeted by pungent plant compounds and environmental irritants like smoke. But that’s where the similarities end.

Plant and environmental irritants alter the chemistry of the allosteric nexus, which causes the TRPA1 channel to rapidly flutter open and closed. This allows positively charged sodium and calcium ions to flow into the cell, triggering pain. Though both ions are able to enter when TRPA1 is activated by these irritants, the channel exhibits a strong preference for calcium and lets much more of it into the cell, which leads to inflammation. By contrast, WaTx wedges itself into the allosteric nexus and props the channel open. This abolishes its preference for calcium. As a result, overall ion levels are high enough to trigger a pain response, but calcium levels remain too low to initiate inflammation.

To demonstrate this, the researchers injected either mustard oil, a plant irritant known to activate the wasabi receptor, or WaTx into the paws of mice. With mustard oil, they observed acute pain, hypersensitivity to temperature and touch — key hallmarks of chronic pain — and inflammation, as evidenced by significant swelling. But with WaTx, they observed acute pain and pain hypersensitivities, but no swelling.

“When triggered by calcium, nerve cells can release pro-inflammatory signals that tell the immune system that something’s wrong and needs to be repaired,” Lin King said. “This ‘neurogenic inflammation’ is one of the key processes that becomes dysregulated in chronic pain. Our results suggest that you can decouple the protective acute pain response from the inflammation that establishes chronic pain. Achieving this goal, if only in principle, has been a longstanding aim in the field.”

The researchers believe their findings will lead to a better understanding of acute pain, as well as the link between chronic pain and inflammation, which were previously thought to be experimentally indistinguishable. The findings may even lay the groundwork for the development of new pain drugs.

“The discovery of this toxin provides scientists with a new tool that can be used to probe the molecular mechanisms of pain, in particular, to selectively probe the processes that lead to pain hypersensitivity,” Lin King said. “And for those interested in drug discovery, our findings underscore the promise of TRPA1 as a target for new classes of non-opioid analgesics to treat chronic pain.”

Additional authors include Joshua J. Emrick, Mark J.S. Kelly and Katalin F. Medzihradszky of UCSF; Volker Herzig and Glenn F. King of the Institute for Molecular Bioscience at the University of Queensland.

This study was supported by an NSF Graduate Research Fellowship (No. 1650113), a UCSF Chuan-Lyu Discovery Fellowship, and grants from the National Institutes of Health (R37 NS065071, R35 NS105038 and T32 GM007449).

The extract of the leaves of Ginkgo biloba, a popular dietary supplement, may offer some therapeutic benefits in fighting Type 2 diabetes, according to a study co-authored by a researcher at the University of Cincinnati (UC) College of Medicine: here.

Snakes, scorpions may prevent hospital patients dying


This National Geographic video is about deadly snakes.

Translated from Leiden university in the Netherlands, 14 August 2014:

Poison of snakes and scorpions for new antibiotics

Hospital bacteria which are resistant to antibiotics are a growing problem. The Leiden antibiotic expert Gilles van Wezel will, along with colleague Michael Richardson and experts in the Leiden university hospital and Naturalis museum, look for new antibiotics, made from the poison of snakes and scorpions. To do that, he will get a cash injection from the Scientific Research Organisation.

A treatment that improves the lives of nearly 1.3 million people with rheumatoid arthritis might one day originate from scorpion venom. A group of researchers led by Dr. Christine Beeton at Baylor College of Medicine has found that one of the hundreds of components in scorpion venom can reduce the severity of the disease in animal models, without inducing side effects associated with similar treatments. The study appears in the Journal of Pharmacology and Experimental Therapeutics: here.

In the first study of its kind, scientists have shown scorpions can fine-tune their venom to suit different predators and prey: here.

Researchers have documented 104 scorpions spanning dozens of countries, providing a vital update to the global record of medically significant scorpions, or scorpions whose venom could be alternately gravely harmful or medically beneficial to human beings: here.

New scorpion species discovered in California


Wernerius inyoensis

From Wildlife Extra:

New species of scorpion discovered – In California

March 2012. Even in places as seemly well-studied as the national parks of North America, new species are still being discovered. Using ultraviolet light that cause scorpions to glow in the dark, researchers from the University of Nevada, Las Vegas (UNLV) have discovered an intriguing new scorpion in Death Valley National Park. They named the species Wernerius inyoensis, after the Inyo Mountains where it was found.

Only 16mm long

This new species is small, only 16 mm in length. “We almost overlooked this one during the survey” said Matthew Graham, a PhD Candidate with the School of Life Sciences at UNLV. Matt discovered the scorpion along with his father who was volunteering that night.

“Only a single male individual was found, but the physical uniqueness was enough to identify it as a new species”, said Michael Webber, another PhD Candidate from UNLV who described the specimen.

This new scorpion appears to be closely related to two other species found over 400 kilometres away at Joshua Tree National Park and along the lower Colorado River. This group of scorpions is most easily identified by the presence of a conspicuous spine at the base of the stinger, the function of which, if any, is unknown.

Live underground

The previously known species are also rarely observed in the wild, and this elusive nature has led to speculation that these scorpions occur at very low densities or have only sporadic surface activity. However, the rocky terrain in which the previous species were found and the discovery of the new species at the base of a talus slope, hint at the possibility that these scorpions are subterrestrial, spending their lives deep in rock crevices or in the interstitial spaces among piles of loose rock.

Scorpions are quite common within arid regions where they can comprise a large component of biological diversity. The new species was discovered during field surveys funded by the National Park Service as part of efforts to develop better inventories for all organisms occurring within the parks.

“In North America, inventories for mammals, birds, reptiles and amphibians are pretty well developed, and we have a good handle on higher-order plants, but for many groups of smaller organisms taxonomic inventories will no doubt lead to numerous new discoveries” said Dr. Jef Jaeger, a Research Assistant Professor at UNLV who initiated and oversaw the scorpion surveys.

In the face of regional environmental changes brought about by human actions and the potential for larger changes that global warming may bring, many scientists and resource managers place new importance on efforts to document and catalogue species diversity.

The study was published in the open access journal ZooKeys.