Ancient amphibians’ teeth, new study

This video says about itself:

23 January 2016

The first major groups of amphibians developed in the Devonian period, around 370 million years ago, from lobe-finned fish which were similar to the modern coelacanth and lungfish. These ancient lobe-finned fish had evolved multi-jointed leg-like fins with digits that enabled them to crawl along the sea bottom.

Some fish had developed primitive lungs to help them breathe air when the stagnant pools of the Devonian swamps were low in oxygen. They could also use their strong fins to hoist themselves out of the water and onto dry land if circumstances so required.

Eventually, their bony fins would evolve into limbs and they would become the ancestors to all tetrapods, including modern amphibians, reptiles, birds, and mammals. Despite being able to crawl on land, many of these prehistoric tetrapodomorph fish still spent most of their time in the water. They had started to develop lungs, but still breathed predominantly with gills.

From the University of Toronto in Canada:

Ancient amphibian had mouthful of teeth ready to grab you

September 15, 2017

The idea of being bitten by a nearly toothless modern frog or salamander sounds laughable, but their ancient ancestors had a full array of teeth, large fangs and thousands of tiny hook-like structures called denticles on the roofs of their mouths that would snare prey, according to new research by paleontologists at the University of Toronto Mississauga (UTM).

In research published online in a recent issue of PeerJ, an open access journal, Professor Robert Reisz, Distinguished Professor of Paleontology at UTM, explains that the presence of such an extensive field of teeth provides clues to how the intriguing feeding mechanism seen in modern amphibians was also likely used by their ancient ancestors.

They believe that the tooth-bearing plates, ideally suited for holding on to prey, such as insects or smaller tetrapods, may have facilitated a method of swallowing prey items via retraction of the eyeballs into the mouth, as some amphibians do today.

In many vertebrates, ranging from fish to early synapsids (ancestors of mammals), denticles are commonly found in dense concentrations on the bones of the hard palate (roof of the mouth). However, in one group of tetrapods, temnospondyls (which are thought to be the ancestors of modern amphibians) these denticles were also found on small, bony plates that filled the large soft part of the palate. The entire roof of the mouth was covered with literally thousands of these tiny teeth that they used to grab prey. Since these toothy plates were suspended in soft tissue, they are often lost or scattered during fossilization.

Denticles are significantly smaller than the teeth around the margin of the mouth — on the order of dozens to a couple hundred microns in length. They are actually true teeth, rather than just protrusions in the mouths of these tetrapods, says Reisz and his colleagues, Bryan Gee and Yara Haridy, both graduate students in paleontology.

“Denticles have all of the features of the large teeth that are found on the margin of the mouth,” says Reisz. “In examining tetrapod specimens dating back ~289 million years, we discovered that the denticles display essentially all of the main features that are considered to define teeth, including enamel and dentine, pulp cavity and peridontia.”

In reaching these conclusions, the researchers analyzed [Permian age] specimens unearthed from the fossil-rich Dolese Brothers Limestone Quarry near Richards Spur, Oklahoma. They were extraordinarily well preserved, making them ideal candidates for study.

The researchers extracted and isolated the denticle-bearing plates, created thin section slides and examined them under the microscope — no small feat since denticles on this animal were only about 100 microns long.

Reisz and his graduate students suggest that the next big question relates to evolutionary changes to the overall abundance of teeth: if these ancient amphibians had an astonishing number of teeth, why have most modern amphibians reduced or entirely lost their teeth?


Brittle stars fossils discovery in Australia

This video says about itself:

13 August 2017

Australia was a different place 275 million years ago – wild storms surged through icy seas, and marine animals lived a tenuous existence. But brittle stars had a survival strategy.

From the University of Cambridge in England:

Meadow of dancing brittle stars shows evolution at work

August 14, 2017

Newly-described fossil shows how brittle stars evolved in response to pressure from predators, and how an ‘evolutionary hangover’ managed to escape them.

Researchers have described a new species of brittle star, which are closely related to starfish, and showed how these sea creatures evolved in response to the rise of shell-crushing predators during the late Palaeozoic Era. The results, reported in the Journal of Systematic Palaeontology, also suggest that brittle stars evolved new traits before the largest mass extinction event in Earth’s history, and not after, as was the case with many other forms of life.

A fossilised ‘meadow’ of dancing brittle stars — frozen in time in the very spot that they lived — was found in Western Australia and dates from 275 million years ago. It contains several remarkably preserved ‘archaic’ brittle stars, a newly-described genus and species called Teleosaster creasyi. They are the last known complete brittle stars of their kind, an evolutionary hangover pushed to the margins of the world’s oceans by the threat from predators.

The researchers, from the University of Cambridge, suggest that while other species of brittle stars evolved in response to predators such as early forms of rays and crabs, these archaic forms simply moved to where the predators weren’t — namely the seas around Australia, which during the Palaeozoic era was pushed up against Antarctica. In these cold, predator-free waters, the archaic forms were able to grow much larger, and lived at the same time as the modern forms of brittle star, which still exist today.

Brittle stars consist of a central disc and five whip-like appendages, which are used for locomotion. They first appear in the fossil record about 500 million years ago, in the Ordovician Period, and today there are about 2,100 different species, mostly found in the deep ocean.

Early brittle stars were just that: brittle. During the Palaeozoic Era, when early shell-crushing predators first appeared, brittle stars made for easy prey. At this point, a split in the evolutionary tree appears to have occurred: the archaic, clunky brittle stars moved south to polar waters, while the modern form first began to emerge in response to the threat from predators, and was able to continue to live in the warmer waters closer to the equator. Both forms existed at the same time, but in different parts of the ocean.

“The threat from predation is an under-appreciated driver of evolutionary change,” said study co-author Dr Kenneth McNamara of Cambridge’s Department of Earth Sciences. “As more predators began to appear, the brittle stars started to evolve more flexible bodies, which enabled them to either burrow into the sediment, or to move more rapidly to escape.”

About 250 million years ago, the greatest mass extinction in Earth’s history — the Permian-Triassic extinction event, or the “Great Dying” — occurred. More than 90% of marine species and 70% of terrestrial species went extinct, and as a result, most surviving species underwent major evolutionary changes as a result.

“Brittle stars appear to have bucked this trend, however,” said co-author Dr Aaron Hunter, a visiting postdoctoral researcher in the Department of Earth Sciences. “They seem to have evolved before the Great Dying, into a form which we still see today.”

Meadows of brittle stars and other invertebrates such as sea urchins and starfish can still be seen today in the seas around Antarctica. As was the case during the Palaeozoic, the threat from predators is fairly low, although the warming of the Antarctic seas due to climate change has been linked to the recent arrival of armies of king crabs, which represent a real threat to these star-filled meadows.

Special Permian beetle fossil discovered in Australia

These are 3-D habitual and environmental reconstructions of Ponomarenkia belmonthensis restored after linedrawing of the holotype and 2-D reconstruction. The plant is Australian cycadophyt Lepidozamia hopei from the Botanical Garden of Jena University. Credit: © Evgeny V. Yan/FSU Jena

From the Friedrich-Schiller-Universitaet Jena in Germany:

300 million-year-old ‘modern’ beetle from Australia reconstructed

July 24, 2017

He’s Australian, around half a centimetre long, fairly nondescript, 300 million years old, and he’s currently causing astonishment among both entomologists and palaeontologists. The discovery of a beetle from the late Permian period, when even the dinosaurs had not yet appeared on the scene, is throwing a completely new light on the earliest developments in this group of insects. The reconstruction and interpretation of the characteristics of Ponomarenkia belmonthensis was achieved by Prof. Dr Rolf Beutel and Dr Evgeny V. Yan of Friedrich Schiller University Jena (Germany). They have published this discovery together with beetle researcher Dr John Lawrence and Australian geologist Dr Robert Beattie in the current issue of the Journal of Systematic Palaeontology. It was Beattie who discovered the only two known fossilised specimens of the beetle in former marshland in Belmont, Australia.

“Beetles, which with nearly 400,000 described species today make up almost one-third of all known organisms, still lived a rather shadowy and cryptic existence in the Permian period,” explains Jena zoologist Beutel. “The fossils known to date have all belonged to an ancestral beetle lineage, with species preferring narrow spaces under bark of coniferous trees. They exhibit a whole series of primitive characteristics, such as wing cases (elytra) that had not yet become completely hardened or a body surface densely covered with small tubercles.”

Earliest form of the modern beetle

In contrast, the species that has now been discovered, assigned to the newly introduced family Ponomarenkiidae, can be identified as a modern beetle, in spite of its remarkable age. Modern characteristics are the antennae resembling a string of beads, antennal grooves, and the unusually narrow abdomen, tapering to a point. What is more, unlike previously known Permian beetles, the wing cases are completely hardened, the body’s surface is largely smooth, and the thoracic segments responsible for locomotion show modern features, notes insect palaeontologist Yan. In addition, it appears that this little beetle had stopped living under tree bark, the habitat favoured by its contemporaries, and had adopted a much more exposed lifestyle on plants. A significant fact is that, due to its unorthodox combination of ancestral and modern characteristics, this genus does not fit in any of the four suborders of beetles that still exist, which is why Yan and Beutel have given it the nickname Bad Boy. “Ponomarenkia belmonthensis shows above all that the first major events of radiation in the evolution of beetles took place before the Permian-Triassic mass extinction,” says Rolf Beutel. Beetles as a whole survived this dramatic event, which saw the acidification of the seas and major volcanic eruptions, considerably better than most other groups of organisms, presumably because of their terrestrial life style and hardened exoskeleton. However, the Bad Boy ran out of luck, as there are no more traces of its existence in the Mesozoic era.

Name honours eminent palaeontologist

The Jena researchers dedicated the genus and family to Moscow palaeontologist Prof. Alexander G. Ponomarenko. He has had a strong influence on beetle palaeontology for decades and supervised Dr Evgeny V. Yan’s doctorate. Yan obtained his doctorate from the Russian Academy of Sciences, spent five years as a postdoc at the Chinese Academy of Sciences in Nanjing, and since June 2016 he has done research at the Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum of the University of Jena as a guest researcher funded by the Alexander von Humboldt Foundation. It is Yan’s elaborate reconstructions on the computer that have provided the precise insights into Ponomarenkia belmonthensis.

In the first stage, some 40 photographs were taken of the two specimens, which were available as impressions on stone. “With this series of photographs an accurate 2D reconstruction was possible, with which we were able to correct for deformations in the original fossil. This allowed us to get closer to the actual beetle,” explains Dr Yan. Based on precise drawings and with the help of a special computer program that is also used for animation and computer games, a very informative 3D model was created. “The 3D reconstruction also enables us to draw conclusions about the way the beetle moved and lived,” the palaeontologist adds. He has developed this method of visualisation, as well as the analytical process in which he also includes hypothetical ancestors of the beetle, since his arrival in Jena. “We have already been able to apply this process to three newly discovered ancient beetle species,” Prof. Beutel is happy to report. “In this way, we have made significant steps towards deciphering the earliest stages in the evolution of an extremely successful genus of animals.”

Big fish, little fish in Permian-Triassic mass extinction

This video says about itself:

The Permian-Triassic extinction event, informally known as the Great Dying, was an extinction event that occurred 252 million years ago, forming the boundary between the Permian and Triassic geologic periods, as well as the Paleozoic and Mesozoic eras.

It is the Earth’s most severe known extinction event, with up to 96% of all marine species and 70% of terrestrial vertebrate species becoming extinct. It is the only known mass extinction of insects. Some 57% of all families and 83% of all genera became extinct. Because so much biodiversity was lost, the recovery of life on Earth took significantly longer than after any other extinction event, possibly up to 10 million years.

Catastrophe by Tony Robinson (2008).

From the University of Bristol in England:

Size not important for fish in the largest mass extinction of all time

June 30, 2017

Understanding modern biodiversity and extinction threats is important. It is commonly assumed that being large contributes to vulnerability during extinction crises.

However, researchers from the University of Bristol and the Chengdu Center of the China Geological Survey, have found that size played no role in the extinction of fish during the largest mass extinction of all time.

The study focused on the evolution of bony fishes during the Permian-Triassic mass extinction 252 million years ago. During this crisis, as many as 90 percent of all species on Earth were killed by massive climate change triggered by huge volcanic eruptions in Russia.

The erupted gases led to worldwide acid rain and atmospheric warming of as much as 20 degrees centigrade. This killed plants, and soil was stripped by rainfall and washed into the sea. Oceans were also heated and life fled from the tropics.

It was expected that a key feature in extinction would have been body size: the large animals would suffer heat and starvation stress first. However, in the new paper, published in Palaeontology, it is shown that larger fish were no more likely to go extinct than small fish.

The study used a detailed summary of all information on fossil fish through a span of over 100 million years, from well before to well after the disaster. Body size information was identified for over 750 of these fishes, and multiple calculations were carried out to allow for variations in the shape of the evolutionary tree and the exact dating of all the species. The result was clear — body size did not provide any advantages or disadvantages to fish during the crisis.

Lead researcher Dr Mark Puttick from the Natural History Museum and University of Bristol’s School of Earth Sciences, explained: “These results continue the trend of recent studies that suggest body size played no role in determining which species survive or go extinct. This is the opposite result we would expect, but provides increasing support for previous studies that show body size plays no role in extinction selectivity.”

The team explored the largest dataset used in an analysis of this type and applied a range of computational evolutionary models to understand these patterns in deep time. The models take account of uncertainties in the quality of the fossil data and the reconstructed evolutionary tree, and the result was clear.

Professor Michael Benton, also from the University of Bristol, added: “These are exciting results. What is important also is that we were able to deploy new methods in the study that take greater account of uncertainties.

“The methods are based around a detailed evolutionary tree so, unlike most previous work in the field, we paid attention to the relationships of all the species under consideration.”

Professor Shixue Hu, leader of the China Geological Survey: “It’s great to see this new analytical work. We were able to include many new fossils from our exceptional biotas in China, and we can see the full impact of the extinction and the subsequent recovery of life during the Triassic.”

Variation in the recovery of tetrapods after the Permian extinction opened the door for dinosaurs and mammals: here.

Mammal-like reptile’s brain, new research

Kawingasaurus fossilis at Museum of Paleontology, Tuebingen, Germany

From the Universität Duisburg-Essen in Germany:

A skull with history: A fossil sheds light on the origin of the neocortex

June 26, 2017

According to a recent study an early relative of mammals already possessed an extraordinarily expanded brain with a neocortex-like structure. This has been discovered by Michael Laaß from the Institute of General Zoology at the University of Duisburg-Essen (UDE).

Today, mammals possess large and efficient brains. But, what was the bauplan of the brain of their far relatives, the therapsids? When and why evolved the neocortex?

For his doctoral thesis the palaeontologist Michael Laaß invesitgated a ca. 255 million years old fossil skull of the therapsid Kawingasaurus fossilis in collaboration with Dr. Anders Kaestner from the Paul Scherrer Institute in Switzerland by means of neutron tomography and reconstructed the internal cranial anatomy in 3D.

The results were amazing: The relative brain volume of Kawingasaurus was about two or three-times larger than in other non-mammalian therapsids. Laaß: “Interestingly, Kawingasaurus already possessed a large forebrain with two distinct cerebral hemispheres.” Obviously, a neocortex-like structure at the forebrain similar to the mammalian neocortex was present in this animal.

Why is this brain structure evolved in Kawingasaurus? “Kawingasaurus was a burrower and special sensory adaptations were crucial for life under ground,” explained the UDE scientist. For example, this therapsid possessed frontally placed eyes, which were probably useful for binocular vision in dimlight environments as it is known from modern cats and owls. Furthermore, extremely ramified trigeminal nerve endings penetrated the snout, which might be an indication for a well developed sense of touch. The inner ear vestibules were also very large, which suggests that Kawingasaurus was well adapted to detect seismic vibrations from the ground.

Laaß: “These special sensory adaptaions also required a more efficient neural processing of the brain than in other therapsids.” It seems reasonable that these special adaptations of the sense organs and the brain to underground life triggered the expansion of the brain. Interestingly, a similar scenario for the origin of the neocortex has been also proposed for early mammals. Consequently, the recent study at the UDE supports this hypothesis.

Moreover, the new discovery also shows that a neocortex-like structure already developed in the therapsid Kawingasaurus about 25 million years earlier before the emergence of the first mammals. However, Kawingasaurus was not a direct ancestor of mammals. Consequently, neocortex-like structures evolved several times independently in pre-mammalian and mammalian evolution.

Mammal-like reptiles, warm-blooded earlier than thought

This video says about itself:

19 May 2016

Ophiacodon (meaning “snake tooth”) is an extinct genus of synapsids belonging to the family Ophiacodontidae that lived from the Late Carboniferous to the Early Permian in North America and possibly Europe. The genus was named along with its type species O. mirus by paleontologist Othniel Charles Marsh in 1878 and currently includes five other species. As an ophiacodontid, Ophiacodon is one of the most basal synapsids and is close to the evolutionary line leading to mammals.

Music: Pianoman by Billy Joel.

From the University of Bonn in Germany:

Warm-bloodedness possibly much older than previously thought

Characteristic may have developed 20 million years earlier, study shows

May 18, 2017

Summary: Warm-bloodedness in land animals could have evolved much earlier than previously thought, suggests a study of the bones of the long-extinct mammal predecessor Ophiacodon.

Warm-bloodedness in land animals could have developed in evolution much earlier than previously thought. This is shown by a recent study at the University of Bonn, which has now been published in the journal Comptes Rendus Palevol.

People who like watching lizards often get the best opportunity to do so in the morning, as they can usually be found sunbathing at this time of day. This is because they rely on an external energy supply to reach their operating temperature. However, mice and other mammals make themselves nice and cozy in a different way: they burn calories and can even keep themselves warm during a bitterly cold winter’s night.

Mammals are thus referred to as warm-blooded. Until now, it was thought that the “body heater” was invented in four-legged land animals around 270 million years ago. “However, our results indicate that warm-bloodedness could have been created 20 to 30 million years earlier,” explains Prof. Martin Sander from the Steinmann Institute for Geology, Mineralogy and Paleontology at the University of Bonn.

Bones as a thermometer

For long-extinct animals, it is naturally not possible to simply determine body temperature using a thermometer. However, warm-bloodedness leaves behind tell-tale signs in fossils. It not only means that the animal is not reliant on the ambient temperature, but also enables faster growth. “And this is shown in the structure of the bones,” explains Sander.

Bones are composites of protein fibers, collagen, and a biomaterial, hydroxyapatite. The more orderly the arrangement of the collagen fibers, the more stable the bone, but the more slowly it normally grows as well. The bones of mammals thus have a special structure. This allows them to grow quickly and yet remain stable. “We call this bone form fibrolamellar,” says the paleontologist.

Together with his PhD student Christen D. Shelton (now at the University of Cape Town), the scientist looked at humerus bones and femurs from a long-extinct land animal: the mammal predecessor Ophiacodon. This lived 300 million years ago. “Even in Ophiacodon, the bones grew as fibrolamellar bones,” says Sander to summarize the analysis results. “This indicates that the animal could already have been warm-blooded.”

Ophiacodon was up to two meters long, but otherwise resembled today’s lizards — and not without good reason: mammals and reptiles are related; they thus share a predecessor. In the family tree, Ophiacodon is very close to the place where these two branches separate.

Were the first reptiles warm-blooded?

However, lizards, turtles and other reptiles living today are cold-blooded. Until now, it has been assumed that this was the original form of the metabolism — i.e. that the shared ancestor of both animal groups was cold-blooded. Warm-bloodedness would thus be a further development, which arose over the course of mammalian evolution.

However, Ophiacodon appears a very short time after the division between mammals and reptiles. “This raises the question of whether its warm-bloodedness was actually a completely new development or whether even the very first land animals before the separation of both branches were warm-blooded,” says Sander. That is just speculation. However, if this theory is correct, we would have to drastically correct our image: the first reptiles would then also have been warm-blooded — and would have only discarded this type of metabolism later.

‘Mass extinctions killed less wildlife than thought’

This video from Britain says about itself:

Catastrophe – The Permian Extinction

The Permian-Triassic extinction event, informally known as the Great Dying, was an extinction event that occurred 252 million years ago, forming the boundary between the Permian and Triassic geologic periods, as well as the Paleozoic and Mesozoic eras. It is the Earth’s most severe known extinction event, with up to 96% of all marine species and 70% of terrestrial vertebrate species becoming extinct. It is the only known mass extinction of insects. Some 57% of all families and 83% of all genera became extinct. Because so much biodiversity was lost, the recovery of life on Earth took significantly longer than after any other extinction event, possibly up to 10 million years.

Presented by Tony Robinson.

Originally published in 2008 by Channel 4

That was the prevalent view in 2008. And now …

From the Proceedings of the National Academy of Sciences of the United States of America:

Estimates of the magnitudes of major marine mass extinctions in earth history

Steven M. Stanley

October 3, 2016


This paper shows that background extinction definitely preceded mass extinctions; introduces a mathematical method for estimating the amount of this background extinction and, by subtracting it from total extinction, correcting estimates of losses in mass extinctions; presents a method for estimating the amount of erroneous backward smearing of extinctions from mass extinction intervals; and introduces a method for calculating species losses in a mass extinction that takes into account clustering of losses. It concludes that the great terminal Permian crisis eliminated only about 81% of marine species, not the frequently quoted 90–96%. Life did not almost disappear at the end of the Permian, as has often been asserted.


Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor–Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record.

Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ∼81% of marine species died out in the great terminal Permian crisis, whereas levels of 90–96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed.