Dinosaurs’ horns, crests, why?


This video is called Carnotaurus vs. iguanodon.

From Science News:

Bony head ornaments signal some supersized dinosaurs

Accents like bumps and horns on theropod skulls linked to evolution of bigger bodies

By Helen Thompson

1:46pm, January 25, 2017

Dinosaur fashion, like that of humans, is subject to interpretation. Bony cranial crests, horns or bumps may have served to woo mates or help members of the same species identify one another. While the exact purpose of this skull decor is debated, the standout structures tended to come with an even more conspicuous trait: bigger bodies.

Terry Gates, a paleontologist at North Carolina State University in Raleigh, and colleagues noticed an interesting trend in the fossil record of theropods, a group of dinosaurs that includes Tyrannosaurus rex and the ancestors of birds. Bigger beasts often sported skeletal headgear.

Across the family tree, Gates and his team analyzed 111 fossils dating from 65 million to 210 million years ago, and the trend held true. It makes sense: “Dinosaur size matters in terms of how they will be visually talking to one another,” says Gates. “When you’re smaller, your means of visual communication would be different than when you’re giant.”

The researchers also calculated that over time, theropod lineages with head ornaments evolved giant bodies (larger than 1,000 kilograms) 20 times faster on average than those without. Ornaments might have supersized some dinos, but researchers aren’t sure. The analysis, which appeared September 27 in Nature Communications, suggests theropods had to reach at least 55 kilograms to grow the headgear.

But among big-boned relatives of modern birds, skull toppers weren’t in vogue. Many of these dinos grew heavier than 55 kilograms, but they instead sported feathers that resembled those used by modern birds for flight. That might be because bigger, bolder feathers and showy headwear served similar ends. Gates speculates: “Once you have a signaling device in the form of a feather, why grow a bony cranial crest?” For these plumed dinosaurs, feathers were in and bony ornaments were out.

Devastation detectives try to solve dinosaur disappearance. Retracing the terrifying, mysterious final days of the dinosaurs. By Thomas Sumner, 2:30pm, January 25, 2017: here.

Dinosaurs extinct, birds survived


Dinosaurs, birds and extinction. Timeline adapted from S.L. Brusatte, J.K. O’Connor and E.D. Jarvis/current biol. 2015

From Science News:

Some lucky birds escaped dino doomsday

Feathers, wishbones and more were a dino thing before they were a bird thing

By Susan Milius

2:30pm, January 25, 2017

The flight stuff

Some traits made famous by modern birds first popped up in dinosaurs that met unfortunate ends. This diagram shows when traits like standing on two legs, feathers and wishbones emerged in the bird/dino part of the tree. Numbers one through four correspond to examples of trailblazing birdlike dinosaurs and early birds highlighted in the interactive slideshow below.

The asteroid strike (or was it the roiling volcanoes?) that triggered dino doomsday 66 million years ago also brought an avian apocalypse. Birds had evolved by then, but only some had what it took to survive.

Biologists now generally accept birds as a kind of dinosaur, just as people are a kind of mammal. Much of what we think of as birdlike traits — bipedal stance, feathers, wishbones and so on — are actually dinosaur traits that popped up here and there in the vast doomed branches of the dino family tree. In the diagram above, based on one from paleontologist Stephen Brusatte of the University of Edinburgh and colleagues, anatomical icons give a rough idea of when some of these innovations emerged.

One branch of the dinosaur tree gradually turned arguably avian (in the Avialae/Aves group) by about 165 million to 150 million years ago. That left plenty of time for bona fide birds to diversify before the great die-off.

The bird pioneers included the once widespread and abundant Enantiornithes, or “opposite birds.” Compared with modern birds, their ball-and-socket shoulder joints were “backwards,” with ball rather than socket on the scapula.

These ancient alt birds may have gone down in the big extinction that left only fish, amphibians, mammals and a few reptile lineages (including birds) among vertebrates. There’s not a lot of information to go on. “The fossil record of birds is pretty bad,” Brusatte says. “But I think those lineages that go up to the red horizontal line of doom in my figure are ones that died in the impact chaos.”

Mammals and extinction of dinosaurs


This video says about itself:

31 December 2015

The world after the extinction of the non-avian dinosaurs, when giant birds hunted mammals before they ruled the earth.

From Science News:

With dinosaurs out of the way, mammals had a chance to thrive

After the extinction event, a new crowd of animals had room to explore a reshaped world

By Meghan Rosen

2:30pm, January 25, 2017

For dinosaurs, the end of the world began in fire.

The space rock that stamped a Vermont-sized crater into the Earth 66 million years ago packed a powerful punch. Any animal living within about a thousand miles of the impact zone was probably vaporized, says paleontologist Stephen Brusatte of the University of Edinburgh in Scotland.

“Everything would have been toast.”

But outside of the impact zone, amid the smoking ruins of the battered planet, some survivors emerged.

Life there was no picnic. Wave after wave of life-threatening disasters pummeled the animals that remained, says paleontologist Nicholas Longrich of the University of Bath in England. Earthquakes. Wildfires. Volcanoes. Acid rain. Dust and gunk in the air, blotting out the sun. “It’s this series of biblical plagues,” Longrich says.

With little light, much plant life perished, and entire food webs collapsed, life would have been like an ancient Hunger Games, with all living creatures as contestants. The odds were not in their favor. From sea to land to lake to sky, animals suffered incredible losses.

“You’re basically losing all the big herbivores, all the big carnivores, apex predators in the oceans, entire guilds — wiped out overnight,” Longrich says. On land, he adds, anything bigger than a beaver went extinct. Just a few places in North America offer a fossil record of the early years after the extinction, he says, but “there’s no evidence for anything over 10 kilos surviving.”

Tyrannosaurus rex, Triceratops, Ankylosaurus and all other nonavian dinosaurs gone.

A lucky few animals managed to cope with the dramatic changes reshaping their environment, Brusatte says. But why exactly some animal groups survived and others bit the dust is still one of paleontology’s biggest mysteries.

New fossil research is now helping scientists peer back through time, offering glimmers of what might have been: How some animals made it through one of the worst extinction events the planet has ever seen — and how mammals, in particular, came to dominate.

Sussing out animals’ survival strategies could offer hints about how animals today might handle a changing climate, Brusatte says. It might even expose the evolutionary drivers that shaped modern life. After the extinction, evolution went wild, he says. The survivors “had a new world to play in — a new world to conquer.”

Cretaceous catastrophe

Near the very end of the Late Cretaceous Epoch, right before the world blew up, one of the largest mammals in North America may have been noshing on bones.

Didelphodon vorax, a honey badger–looking creature with oddly bulbous teeth, was petite by today’s standards — weighing just about five kilograms. But it was no lightweight. “Pound for pound, it had the greatest bite force of any mammal we’ve ever measured,” says paleontologist Gregory Wilson of the University of Washington in Seattle.

Wilson and colleagues estimated Didelphodon’s bite force from the shape of its fossilized skull. The mammal could snap its jaws together with about 50 pounds of force — enough to crush bones and crack shells, the team reported December 8 in Nature Communications.

This fearsome skill wasn’t enough to save it: After the asteroid hit and global disasters descended, Didelphodon went extinct — just like duck-billed dinosaurs and Pteranodon.

The colossal wipeout of Didelphodon and so many others is plain to see in the fossil record. In Montana’s badlands, where Wilson and colleagues hunt for ancient teeth and bones, tributaries of the Missouri River carve steep bluffs into the earth, exposing slabs of sandstone and siltstone rock. Montana is part of the Western Interior, an ancient seaway that once cut a wide aisle through North America from the Gulf of Mexico to the Arctic.

Much of what scientists know about the dino-killing event, called the Cretaceous–Paleogene, or K–Pg, extinction, traces back to this sweeping tract of land. The area has rocks with fossils from before and after the extinction event. “We haven’t found many places in the world like it,” Wilson says. Spain, France and Romania hold a few dinosaur and mammalian fossils from this time period (and a handful of underexplored spots in India and South America may offer more). But so far, the Western Interior is home to the best land-based record scientists have.

In Montana, the rocks capture a snapshot of time from about 2 million years before the extinction to roughly 1.5 million years after. A thin layer of reddish-brown clay marks the before and after of the asteroid’s impact. “It’s a line in the sand, almost literally,” Brusatte says. Within the clay, here and elsewhere in the world, scientists find elevated levels of iridium, a silvery-white metal carried to Earth via asteroid. Though not visible by eye (scientists need chemical tests to spot it), the metallic dust marks a memory of the impact known as Chicxulub.

All around the globe, Brusatte says, scientists see “a knife-edge separation in the rock” before and after Chicxulub hit. “For over 150 million years you have tons and tons of dinosaur bones, and then literally — Bam! There’s nothing.”

Dinosaurs were among the animal groups hit hardest by the extinction. Others suffered fewer casualties. In what is now northeastern Montana, about half of fish species survived, Wilson reported at an Origins Project workshop at Arizona State University in 2015. Turtles and salamanders seemed to fare the best, losing only roughly a quarter of their species, Wilson and colleagues reported in a series of studies in 2014.

“Most people think that mammals did awesome,” Wilson says. But at least 75 percent of mammals were snuffed out, according to his analysis, which compared fossils present before and after the extinction. Longrich and colleagues put the number even higher: Of 59 mammalian species living in North America during the Late Cretaceous Epoch, about 93 percent died out after the asteroid hit. Those calculations appeared in the Journal of Evolutionary Biology in August 2016.

Still, some species found a way to endure.

Survival strategies

A small body. An aquatic lifestyle. Night vision. An unfussy palate. Any one of these features could have helped survivors withstand the relentless undoing of their ecosystems.

It makes sense. Small animals would have required less food than large ones and may have had an easier time finding shelter. Animals that lived in water could have been buffered from dramatic temperature swings.

Nocturnal animals would have been able to hunt for food when debris-filled skies wrapped the world in gloom. The right diet, in fact, could have been one of the biggest tickets to survival. Among insects, for instance, the difference between survival and demise depended on dietary diversity.

Some insects are adventurous eaters: They feed on lots of different kinds of plants. Other insects are pickier. Leaf miners, for example, typically dine on just one plant species, or a few closely related ones, which made it hard to survive the cataclysm.

These insects burrow through leaves, leaving behind a distinctive trail. Cataloging the trails and other damage patterns on fossil leaves can give researchers a rough idea of the kinds of insects that went extinct — or survived, says Penn State paleontologist Michael Donovan. It’s like a calling card stamped into stone.

Donovan examined 3,646 fossil leaves found in Patagonia, Argentina, from slices of time bracketing the Chicxulub impact. The leaf-mining patterns seen before the impact vanished after the asteroid hit, he and colleagues reported in Nature Ecology & Evolution in 2016.

That suggests a major extinction of leaf-mining insects, a find echoed in previous results from North Dakota. (Though not all perished. Donovan saw new leaf-mining patterns after the extinction). Other types of leaf damage did persist through the extinction event — damage made by insects that eat many plant species. Unlike leaf miners, these insects took what they could get in the dark days after the impact. “That’s probably a good way to survive,” Donovan says.

This type of strategy may have helped some species adapt to their new habitat, Longrich says, which after the K–Pg extinction “happened to be this post-apocalyptic wasteland world.” It’s like Mad Max of the movies, he says. “A guy who’s super versatile — good at many different things,” Longrich says, “that’s who’s likely to live through an apocalypse.”

Some animals may have already been plugged into the right food chain. When dinosaurs began dying and leaves fell from trees, the bodies and detritus would have littered the ground and washed into rivers and lakes. That would have been a bonanza for the garbage disposal crew. Decaying matter could feed microbes and fish and insects, which could then feed larger animals, like crocodiles and mammals.

Birdlike dinosaurs with beaks could have cracked into another Cretaceous leftover: seeds. The calorie-rich food could have lasted for decades, says paleontologist Derek Larson of the Philip J. Currie Dinosaur Museum in Alberta and the University of Toronto. Other birdlike dinosaurs, with sharp teeth but no beaks, would have had trouble eating seeds. That might explain why they succumbed, while their close relatives — ancestors of modern birds — survived, he and colleagues suggested last year in Current Biology (SN: 5/14/16, p. 11).

Making it as a mammal

Mammals seemed to capitalize on the detritus-based food chain too, Wilson says. He and University of Washington student Stephanie Smith studied fossils found in northeastern Montana from a 1.2-million-year window after the impact. “Fossil mammals are mostly just teeth,” Smith said at the 2016 Society of Vertebrate Paleontology meeting in Salt Lake City. “Luckily, teeth contain a lot of information.”

Smith compared the intricate details of fossil teeth with those from living mammals to learn about the ancient animals’ diets. In Montana, at least, mammals that lived during the first 200,000 years after the extinction event tended to have teeth that were good for crunching insects — “sharp and pointy,” Wilson says. These animals would have had a reliable source of supper. But plant eaters, which have teeth with big basins for grinding and crushing, would have seen their food supplies wither.

For some mammals, a sharp sense of smell could also have offered a competitive edge. Onychodectes tisonensis, a bull dog–sized mammal that lived about 350,000 years after the extinction, had one of the largest olfactory bulbs of any mammal (relative to the cerebrum) — bigger than those found in even expert sniffers like modern dogs and pigs. The smell organs look like two almonds sticking out from the front of the brain, says James Napoli of Brown University in Providence, R.I., who reported the results at the paleontology meeting last year. He and colleagues built a digital model based on a CT scan of an Onychodectes skull unearthed in New Mexico in 1892.

Having big olfactory bulbs means the animal would have been good at nosing out meals, a valuable skill when food is scarce, Napoli says.

Onychodectes belongs to a weird group of mammals called taeniodonts, says study coauthor Thomas Williamson of the New Mexico Museum of Natural History and Science in Albuquerque. “They have bizarre-looking skulls, enlarged forearms, big claws,” he says. The animals may have survived by digging up and eating tough roots and tubers. “We call them the pigs of the Paleocene.”

Paleontologists don’t know for sure if this group of animals lived through the asteroid crash, or if they arose afterward. There’s just one reported taeniodont fossil from the Late Cretaceous — a partial skull from Alberta, Canada.

If taeniodonts did make it through the impact and its aftermath, an aptitude for rooting out hidden food caches would have been useful. If, instead, the animal group emerged later, Onychodectes could have been one of the early examples of mammalian experimentation.

For more than 150 million years, mammals had been “kept under the thumb of the dinosaurs,” Wilson says. After the extinction, with dinosaurs out of the picture, the “Age of Mammals” could begin.

Boomtime for mammals

In the years after the impact, the world was like a school playground that had banished the big kids.

The animals that survived the early hard years gave rise to a slew of new species able to fill the niches left behind by dinosaurs — and all the other creatures that didn’t make it. Before the impact, humans’ ancestors mostly scurried along the ground. But afterward, with fewer predators and competitors, they were free to try out new lifestyles, like living in trees and gliding.

Placental mammals, a group that includes humans, elephants and most mammals living today, experienced a big evolutionary boom, says Thomas Halliday, a paleobiologist at University College London. “Diversification exploded.”

Without dinosaurs breathing down their necks and with fewer competitors, placental mammals had “freedom to evolve in a variety of new directions,” Halliday says. It’s like they were “exploring almost every aspect of the ways of being a mammal.”

When exactly these mammals arose and how much dinosaurs were holding them back remains controversial: Molecular evidence places their origin tens of millions of years before the dinosaurs died. Fossil evidence puts it closer to the K–Pg extinction.

In a series of papers published in 2015 and 2016, Halliday and colleagues analyzed mammalian fossils to sketch out a clearer picture of placental mammals’ history. First, the team built a family tree focused on placental mammals that lived in the Paleocene, the 10-million-year epoch immediately following the extinction. That’s no easy feat, Halliday says, because these animals tend to lack the kind of standout features that would clearly label them as members of one group or another.

So he and colleagues created an exhaustive catalog of 680 body features (such as skull length, tooth number and molar shape) in 177 genera of extinct and living placental mammals and their close relatives. Presumably, animals that shared features were more closely related than those that didn’t. With so many species, the web of potential relationships was astronomical, Halliday says. “There were more possible arrangements … than there are hydrogen atoms in the universe.” The team plugged the data into a computer, which chugged through all the possibilities and came up with the most likely family tree.

Then, the researchers used the tree to calculate rates of evolution. Placental mammals, they found, probably did originate in the Late Cretaceous, but they evolved three times faster after the extinction event than in the 80 million years before it. “We’re talking about new anatomical innovations,” Halliday says: molars good for grinding leaves, limbs adapted for climbing or swimming.

One of these early innovators was Periptychus carinidens, a muscular animal that walked like a bear and had five toes with “weird little hooves,” says University of Edinburgh paleontologist Sarah Shelley. “It’s not like anything alive today.”

Shelley, Williamson and Brusatte described Periptychus fossils found in New Mexico’s San Juan Basin at the 2016 paleontology meeting. “They have really strange cheek teeth,” Williamson says. The teeth are enlarged and conical with big ridges that run from the base to the tip. He thinks Periptychus used its weird chompers to eat hard objects — seeds, perhaps, or unripe fruit.

Periptychus was among the first plant-eating placental mammals to emerge after the extinction — and for a few million years it flourished. Fossils of the animal have been found from West Texas to eastern Montana, Williamson says. “It must have been a highly successful mammal.” But Periptychus couldn’t cope with changes that came later — it died out about 60 million years ago. The animals “were early experiments,” he says, “but they were ultimately dead ends.”

That’s how it goes with evolution, Halliday says. After the dinosaurs died and mammals tested out different modes of life, some found success and others fizzled. “The most successful strategies are honed and the less successful ones are pared away,” he says.

What’s left is what we have today: more than 5,400 different mammal species spread across the world. But descending from an evolutionary winner doesn’t guarantee a safe future. As species carve out an ever more ideal niche, they become more and more vulnerable to extinction, Halliday says. Animals built for a narrow mode of living tend to have a hard time handling disruptions to their environment. And as the climate changes, some species have already begun to suffer. “In the metaphorical sense, we are in the middle of the asteroid strike right now,” he says.

Already, a changing climate has erased pockets of plants and animals across the globe, John Wiens of the University of Arizona in Tucson reported in December 2016 in PLOS Biology. Further warming in coming decades could ramp up extinctions, he warns.

That’s why studying life and death 66 million years ago is still relevant today, Brusatte says. “It’s not just storytelling about the ancient past,” he says. “It can help us understand our modern world,” and maybe even influence conservation strategies to mitigate some of the changes that are happening now.

Dinosaur age lizard discovery


This video from the USA says about itself:

3 June 2013

A team of U.S. paleontologists, led by Jason Head of the University of Nebraska-Lincoln, describes fossils of the giant lizard from Myanmar in the scientific journal Proceedings of the Royal Society B. Their analysis shows that it is one of the biggest known lizards ever to have lived on land.

At almost six feet long and weighing upwards of 60 pounds, the lizard provides new and important clues on the evolution of plant-eating reptiles and their relationship to global climate and competition with mammals.

From the University of Washington in the USA:

24 January 2017

Prized fossil find illuminates the lives of lizards in the Age of Dinosaurs

Paleontologists picking through a bounty of fossils from Montana have discovered something unexpected — a new species of lizard from the late dinosaur era, whose closest relatives roamed in faraway Asia.

This ancient lizard, which lived 75 million years ago in a dinosaur nesting site, is described from stem to stern in a paper published Jan. 25 in the Proceedings of the Royal Society B. Christened Magnuviator ovimonsensis, the new species fills in significant gaps in our understanding of how lizards evolved and spread during the dinosaur era, according to paleontologists at the University of Washington and the Burke Museum of Natural History & Culture who led the study.

“It is incredibly rare to find one complete fossil skeleton from a relatively small creature like this lizard,” said David DeMar, lead author and postdoctoral research associate in the UW biology department and the Burke Museum. “But, in fact, we had two specimens, both from the same site at Egg Mountain in Montana.”

Right out of the gate, Magnuviator is reshaping how scientists view lizards, their biodiversity and their role in complex ecosystems during this reptile’s carefree days in the Cretaceous Period 75 million years ago.

Based on analyses of the nearly complete fossil skeletons, Magnuviator was an ancient offshoot of iguanian lizards — and they’re actually the oldest, most complete iguanian fossils from the Americas. Today, iguanians include chameleons of the Old World, iguanas and anoles in the American tropics and even the infamous water-walking basilisk — or “Jesus Christ” — lizards. But based on its anatomy, Magnuviator was at best a distant relative of these modern lizard families, most of which did not arise until after the non-avian dinosaurs — and quite a few lizards and other creatures — went extinct 66 million years ago.

The team came to these conclusions after meticulous study of both Egg Mountain specimens over four years. This included a round of CT scans at Seattle Children’s Hospital to narrow down the fossil’s location within a larger section of rock and a second round at the American Museum of Natural History to digitally reconstruct the skull anatomy. The fact that both skeletons were nearly complete allowed them to determine not only that Magnuviator represented an entirely new species, but also that its closest kin weren’t other fossil lizards from the Americas. Instead, it showed striking similarities to other Cretaceous Period iguanians from Mongolia.

“These ancient lineages are not the iguanian lizards which dominate parts of the Americas today, such as anoles and horned lizards,” said DeMar. “So discoveries like Magnuviator give us a rare glimpse into the types of ‘stem’ lizards that were present before the extinction of the dinosaurs.”

But Magnuviator’s surprises don’t end with the Mongolian connection. The site of its discovery is also eye-popping.

Egg Mountain is already famous among fossil hunters. Over 30 years ago, paleontologists discovered the first fossil remains of dinosaur babies there, and it is also one of the first sites in North America where dinosaur eggs were discovered.

“We now recognize Egg Mountain as a unique site for understanding Cretaceous Period ecosystems in North America,” said senior author Greg Wilson, UW associate professor of biology and curator of paleontology at the Burke Museum. “We believe both carnivorous and herbivorous dinosaurs came to this site repeatedly to nest, and in the process of excavating this site we are learning more and more about other creatures who lived and died there.”

The team even named their new find as homage to its famous home and its close lizard relatives in Asia. Magnuviator ovimonsensis means “mighty traveler from Egg Mountain.”

Through excavations at Egg Mountain led by co-author David Varricchio at Montana State University and meticulous analysis of fossils at partner institutions like the UW and the Burke Museum, scientists are piecing together the Egg Mountain ecosystem of 75 million years ago. In those days, Egg Mountain was a semi-arid environment, with little or no water at the surface. Dinosaurs like the duck-billed hadrosaurs and the birdlike, carnivorous Troodon nested there.

Researchers have also unearthed fossilized mammals at Egg Mountain, which are being studied by Wilson’s group, as well as wasp pupae cases and pollen grains from plants adapted for dry environments. Based on the structure of Magnuviator’s teeth, as well as the eating habits of some lizards today, the researchers believe that it could have feasted on wasps at the Egg Mountain site. Though based on its relatively large size for a lizard — about 14 inches in length — Magnuviator could have also eaten something entirely different.

“Due to the significant metabolic requirements to digest plant material, only lizards above a certain body size can eat plants, and Magnuviator definitely falls within that size range,” said DeMar.

Whatever its diet, Magnuviator and its relatives in Mongolia did not make it into the modern era. DeMar and co-authors hypothesize that these stem lineages of lizards may have gone extinct along with the non-avian dinosaurs. But given the spotty record for lizards in the fossil record, it will take more Magnuviator-level discoveries to resolve this debate. And, unfortunately, part of the excitement surrounding Magnuviator is that it is a rare find.

Other co-authors are the late Jack Conrad of the New York Institute of Technology and the American Museum of Natural History and Jason Head of the University of Cambridge. The research was funded by the National Science Foundation and the American Museum of Natural History.

Giant otter fossil discovery in China


This video from the USA says about itself:

23 January 2017

Dr. Denise Su, curator of paleobotany and paleoecology at The Cleveland Museum of Natural History, discusses the discovery of a new species of prehistoric otter, named Siamogale melilutra.

From Science News:

Ancient otter of unusual size unearthed in China

by Meghan Rosen

5:13pm, January 24, 2017

Fossils of a giant otter have emerged from the depths of an open-pit mine in China.

The crushed cranium, jaw bone and partial skeletons of at least three animals belong to a now-extinct species of otter that lived some 6.2 million years ago, scientists report January 23 in the Journal of Systematic Palaeontology.

At roughly 50 kilograms in weight, the otter would have outclassed today’s giant otter, a river-dwelling South American mammal weighing in at around 34 kilograms. Scientists named the new species Siamogale melilutra, a nod to its unusual mix of badger and otter features. Melilutra is a mash-up of the Latin words for both creatures.

Badgers and otters both belong to a group of carnivorous animals called Mustelidae, but scientists have had trouble figuring out where to place extinct members in the mammalian family tree. (European badgers and modern otters share similar-looking teeth and skulls.) Still, Siamogale melilutra, however badgerlike, is indeed an otter, researchers concluded after CT scanning, reconstructing and analyzing the fossil skull.

Based on plant and animal fossils found near the collection site, scientists believe that the ancient otter probably lived in the shallow lake of a warm and humid swamp, lush with broad-leaved evergreens and grasses.

‘Asteroids not cause of Ordovician biodiversification’


This video says about itself:

30 May 2013

Few people have heard of the Ordovician Period, but it was one of the most important periods in Earth’s history. Many familiar sea creatures evolved, and life took first steps onto land.

From Science News:

Asteroid barrage, ancient marine life boom not linked

New dating debunks idea that bombardment created eco-niches needed to diversify

By Thomas Sumner

11:00am, January 24, 2017

An asteroid bombardment that some say triggered an explosion of marine animal diversity around 471 million years ago actually had nothing to do with it.

Precisely dating meteorites from the salvo, researchers found that the space rock barrage began at least 2 million years after the start of the Great Ordovician Biodiversification Event. So the two phenomena are unrelated, the researchers conclude January 24 in Nature Communications.

Some scientists had previously proposed a causal link between the two events: Raining debris from an asteroid breakup (SN: 7/23/16, p. 4) drove evolution by upsetting ecosystems and opening new ecological niches. The relative timing of the impacts and biodiversification was uncertain, though.

Geologist Anders Lindskog of Lund University in Sweden and colleagues examined 17 crystals buried alongside meteorite fragments. Gradual radioactive decay of uranium atoms inside the crystals allowed the researchers to accurately date the sediment layer to around 467.5 million years ago. Based in part on this age, the researchers estimate that the asteroid breakup took place around 468 million years ago. That’s well after fossil evidence suggests that the diversification event kicked off.

Other forces such as climate change and shifting continents instead promoted biodiversity, the researchers propose.

Baby dinosaurs, new research


This 2009 video is called Dinosaur Eggs & Babies – Full Program.

From Science News:

Baby dinosaurs took three to six months to hatch

Fossils show dinos had incubation times more similar to reptiles than birds

By Laurel Hamers

3:10pm, January 23, 2017

Dinosaurs might live on today as birds, but they hatched like reptiles. Developing dinos stayed in their eggs three to six months before emerging, far longer than previously suspected, researchers report online January 3 in the Proceedings of the National Academy of Sciences.

With few clues to dinosaurs’ embryonic lives, scientists assumed that young dinosaurs shared modern birds’ swift incubation period, which ranges from 45 to 80 days for eggs in the size range of dino eggs. A reptile egg generally takes about twice as long to hatch as a bird egg of similar size, says lead author Gregory Erickson, a paleobiologist at Florida State University in Tallahassee.

But counts of growth lines on the teeth of rare fossilized dinosaur embryos from two species, Protoceratops andrewsi and Hypacrosaurus stebingeri, suggest a longer trajectory like that of reptiles, say Erickson and colleagues at the University of Calgary in Canada and the American Museum of Natural History in New York City. These lines, laid down daily on teeth, can be used like tree rings.

The longer incubation time might have worked against dinosaurs, Erickson says. Guarding a brood of eggs for many months could put parents at risk of attack. And a species hit by environmental catastrophe would have a harder time bouncing back.