Dinosaur discovery in Egypt

This video says about itself:

29 January 2018

Bus-sized veggie dinosaur travelled across the Sahara

The ‘holy grail’ of dinosaur fossils has been found in the Sahara desert. Researchers have unearthed the remains of a long-necked, four-legged, school bus-sized titanosaur that lived roughly 80 million years ago.

The plant-eating Cretaceous Period dinosaur, named Mansourasaurus shahinae, was nearly 33 feet (10 metres) long and weighed 5.5 tons (5,000 kg). Very few fossils have been unearthed from the last days of the dinosaurs in Africa, and the latest discovery sheds light on this missing history. The find also reveals that at least some dinosaurs could move between Africa and Europe during the final days of the dinosaurs. Scientists say the dinosaur is an ‘incredible discovery’.

From Ohio University in the USA:

New Egyptian dinosaur reveals ancient link between Africa and Europe

Mansourasaurus shahinae helps fill in gaps of African dinosaurs of Late Cretaceous

January 29, 2018

When it comes to the final days of the dinosaurs, Africa is something of a blank page. Fossils found in Africa from the Late Cretaceous, the time period from 100 to 66 million years ago, are few and far between. That means that the course of dinosaur evolution in Africa has largely remained a mystery. But in the Sahara Desert of Egypt, scientists have discovered a new species of dinosaur that helps fill in those gaps: Mansourasaurus shahinae, a school-bus-length, long-necked plant-eater with bony plates embedded in its skin.

The fossilized remains of Mansourasaurus were unearthed by an expedition undertaken by the Mansoura University Vertebrate Paleontology (MUVP) initiative, an effort led by Dr. Hesham Sallam of the Department of Geology at Mansoura University in Mansoura, Egypt. Sallam is the lead author of the paper published today in the journal Nature Ecology and Evolution that names the new species. The field team included several of his students, many of whom — Ms. Iman El-Dawoudi, Ms. Sanaa El-Sayed, and Mrs. Sara Saber — also participated in the study of the new dinosaur. The creature’s name honors both Mansoura University and Ms. Mona Shahin for her integral role in developing the MUVP. According to Sallam, “The discovery and extraction of Mansourasaurus was such an amazing experience for the MUVP team. It was thrilling for my students to uncover bone after bone, as each new element we recovered helped to reveal who this giant dinosaur was.”

“Mansourasaurus shahinae is a key new dinosaur species, and a critical discovery for Egyptian and African paleontology”, says Dr. Eric Gorscak, a postdoctoral research scientist at The Field Museum and a contributing author on the study. Gorscak, who began work on the project as a doctoral student at Ohio University, where his research focused on African dinosaurs, adds, “Africa remains a giant question mark in terms of land-dwelling animals at the end of the Age of Dinosaurs. Mansourasaurus helps us address longstanding questions about Africa’s fossil record and paleobiology — what animals were living there, and to what other species were these animals most closely related?”

Late Cretaceous dinosaur fossils in Africa are hard to come by — much of the land where their fossils might be found is covered in lush vegetation, rather than the exposed rock of dinosaur treasure troves such as those in the Rocky Mountain region, the Gobi Desert, or Patagonia. The lack of a Late Cretaceous fossil record in Africa is frustrating for paleontologists since, at that time, the continents were undergoing massive geological and geographic changes.

During the earlier years of the dinosaurs, throughout much of the Triassic and Jurassic periods, all the continents were joined together as the supercontinent of Pangaea. During the Cretaceous Period, however, the continents began splitting apart and shifting towards the configuration we see today. Historically, it hasn’t been clear how well-connected Africa was to other Southern Hemisphere landmasses and Europe during this time — to what degree Africa’s animals may have been cut off from their neighbors and evolving on their own separate tracks. Mansourasaurus, as one of the few African dinosaurs known from this time period, helps to answer that question. By analyzing features of its bones, Sallam and his team determined that Mansourasaurus is more closely related to dinosaurs from Europe and Asia than it is to those found farther south in Africa or in South America. This, in turn, shows that at least some dinosaurs could move between Africa and Europe near the end of these animals’ reign. “Africa’s last dinosaurs weren’t completely isolated, contrary to what some have proposed in the past,” says Gorscak. “There were still connections to Europe.”

Mansourasaurus belongs to the Titanosauria, a group of sauropods (long-necked plant-eating dinosaurs) that were common throughout much of the world during the Cretaceous. Titanosaurs are famous for including the largest land animals known to science, such as Argentinosaurus, Dreadnoughtus, and Patagotitan. Mansourasaurus, however, was moderate-sized for a titanosaur, roughly the weight of an African bull elephant. Its skeleton is important in being the most complete dinosaur specimen so far discovered from the end of the Cretaceous in Africa, preserving parts of the skull, the lower jaw, neck and back vertebrae, ribs, most of the shoulder and forelimb, part of the hind foot, and pieces of dermal plates. Says study coauthor and dinosaur paleontologist Dr. Matt Lamanna of Carnegie Museum of Natural History, “When I first saw pics of the fossils, my jaw hit the floor. This was the Holy Grail — a well-preserved dinosaur from the end of the Age of Dinosaurs in Africa — that we paleontologists had been searching for for a long, long time.”

Also contributing to the Mansourasaurus research were experts on African paleontology from other institutions in Egypt and the US. MUVP student Iman El-Dawoudi played a particularly important role in the analysis of the new titanosaur, making numerous observations on its skeleton. “The combined effort of multiple institutions across the globe, not to mention the absolutely key role played by students on the project from the field, to the laboratory, to the final analysis and writeup of the results, exemplifies the collaborative nature of expeditionary sciences today,” notes Dr. Patrick O’Connor, study coauthor and professor of anatomy at the Ohio University Heritage College of Osteopathic Medicine.

Funding for the Mansourasaurus study was provided by grants from Mansoura University, the Jurassic Foundation, the Leakey Foundation, the National Geographic Society/Waitt Foundation, and the National Science Foundation (NSF).

“The discovery of rare fossils like this sauropod dinosaur helps us understand how creatures moved across continents, and gives us a greater understanding of the evolutionary history of organisms in this region,” says Dena Smith, a program director in NSF’s Division of Earth Sciences, which partially funded the laboratory portion of the research.

Scientific discoveries are often compared to finding the last missing puzzle piece to complete a picture; Gorscak says that since so little is known about African dinosaurs, Mansourasaurus is better likened to an earlier step in the puzzle-solving process. “It’s like finding an edge piece that you use to help figure out what the picture is, that you can build from. Maybe even a corner piece.”

“What’s exciting is that our team is just getting started. Now that we have a group of well-trained vertebrate paleontologists here in Egypt, with easy access to important fossil sites, we expect the pace of discovery to accelerate in the years to come,” says Sallam.


Arkansas dinosaur tracks in the USA

This video from the USA says about itself:

Acrocanthosaurus atokensis was the largest meat eating dinosaur in North America of the early to mid Cretaceous period. The most complete specimen was discovered just 10 miles from the Museum of the Red River in Idabel and it is now the State Dinosaur of Oklahoma.

This video from 2011 includes interviews with one of the principal excavators, Cephis Hall and Dr. Kenneth Carpenter of the USU Eastern Prehistoric Museum, who with Dr. Phillip J. Currie in 2000 described the find. Also interviewed are: Henry Moy of the Museum of the Red River, Neil Larson of the Black Hills Institute, Kyle Davies of the Sam Noble Museum, and Michael Bergland of mnfx.com.

From the University of Arkansas, Fayetteville in the USA:

Digitally preserving important Arkansas dinosaur tracks

January 16, 2018

Scientists using laser-imaging technology have documented and digitally preserved the first known set of theropod dinosaur tracks in the state of Arkansas.

The tracks, discovered in 2011 in a working gypsum quarry near Nashville, Ark., have since been destroyed. But high-resolution digital scans taken over a period of two weeks in 2011 allowed a team of researchers to study the tracks and determine that they were made by Acrocanthosaurus, a large carnivorous dinosaur. The findings extended the known range of Acrocanthosaurus 56 miles east, to the western shore of an ancient inland sea.

“It actually confirms that the main genus of large theropods in North America was Acrocanthosaurus”, said Celina Suarez, an assistant professor in the Department of Geosciences who was part of the team that documented and studied the tracks. “It now has been found in Wyoming, Utah, Oklahoma, Arkansas and Maryland, a huge range.”

Results of the study were recently published in the journal PLOS ONE. Researchers also created a detailed, publicly accessible online map of the site and the tracks. Brian Platt, an assistant professor of geology from the University of Mississippi, led the study. Researchers from the University of Arkansas Center for Advanced Spatial Technology (CAST) provided the scanning equipment and expertise.

The Rush to Preserve the Site

After the tracks were discovered, researchers received a $10,000 Rapid Grant from the National Science Foundation to quickly document the site. The U of A’s vice provost for research and economic development and the J. William Fulbright College of Arts and Sciences provided matching grants, for a total of $30,000.

The mining company moved its operations to allow researchers a short window of time to document the find. Researchers used LiDAR, which stands for light detection and ranging, because traditional methods would have taken too long, said Suarez. “From a technical standpoint, it’s important that the ability to rapidly scan such a large area is available to paleontologists. It was invaluable for this project since we had such little time to work.”

The site had two different sized Acrocanthosaurus tracks, suggesting both adult and younger animals walked the ancient tidal flat about 100 million years ago, during the Cretaceous Period. It also contained tracks made by sauropods, long-necked plant-eating dinosaurs.

LiDAR uses a pulsed laser to measure distances to the earth in tiny increments, generating a data “point cloud” that is used to digitally recreate a physical space. In this case, the equipment was mounted on a lift over the site. By analyzing carbon and oxygen isotopes of the rock at the track surface, researchers determined that the track surface was indeed the surface that the animals stepped on, rather than an underlying layer that remained when the original surface eroded.

The digital reconstruction of the trackway site: http://trackways.cast.uark.edu/index.html

Dinosaurs, lies and truth

This video says about itself:

LIES About Dinosaurs You PROBABLY Still Believe!

8 January 2018

Check out these lies about dinosaurs you probably still believe! From the largest and most dangerous dinosaurs like Tyrannosaurus rex and Brontosaurus to smaller ones like velociraptors, here are the top 10 myths about dinos debunked!


New dinosaur species with ‘hummingbird’ colours

This 15 January 2018 video is called New ‘rainbow’ dinosaurs might have sparkled like a hummingbird.

From daily The Independent in Britain today:

Newly discovered ‘rainbow’ dinosaur had shiny, colourful feathers like a hummingbird

Microscopic analysis of 160 million-year-old fossil suggests prehistoric reptile had iridescent plumage similar to that found in some modern bird species

Josh Gabbatiss, Science Correspondent

A duck-sized dinosaur found in China had a head and chest covered in shiny feathers similar to those seen on hummingbirds.

The creature has been named Caihong juji, meaning “rainbow with the big crest” in Mandarin.

When palaeontologists analysed a fossil of the dinosaur, first discovered by a farmer in north-eastern China, they found evidence of brightly-coloured plumage.

Iridescent feathers, which are found on some modern bird species, have a metallic sheen and change colour when viewed from different angles, giving them a “rainbow-like” appearance.

“When you look at the fossil record, you normally only see hard parts like bone, but every once in a while soft parts like feathers are preserved and you get a glimpse into the past,” said Dr Chad Eliason, a bird researcher at The Field Museum in Chicago and one of the authors of the paper describing the dinosaur.

“The preservation of this dinosaur is incredible; we were really excited when we realised the level of detail we were able to see on the feathers.”

Their findings were published in the journal Nature Communications.

When Dr Eliason and his colleagues examined the preserved feathers under a microscope, they could see tiny imprints of cells called melanosomes.

Melanosomes are the cells that contain pigment and give animals their colour.

At around 160 million-years-old, the pigment in the cells had long since degraded, but the scientists were able to determine the dinosaur’s appearance based on the structure of the cells.

Comparison of the ancient melanosomes of the Caihong with modern bird species revealed close similarities with the cells responsible for the iridescent plumage seen in hummingbirds.

Iridescent feathers were found covering the dinosaur’s head and chest, as well as around the base of its tail.

The skull of the Caihong is similar to that of the Velociraptor, but it also has a bony crest in the middle of its head.

The discovery opens up questions about how iridescence first evolved.

It could be that the Caihong’s “rainbow” feathers were used to attract mates, just like modern peacocks use their colourful tails.

“I came out of the project with a whole different set of questions that I wanted answers to”, said Dr Eliason.

“When I open up a drawer full of birds in the Field Museum’s collections, now I want to know when those iridescent feathers first developed, and how.”


Making a dinosaur ‘fossil’ in your own home

This 2017 video is called Massospondylus | Learn Dinosaur Facts | Dinosaur Cartoons for Children | I’m A Dinosaur.

From the University of the Witwatersrand in South Africa:

Print a 200-million-year-old dinosaur ‘fossil’ in your own home

CT-scan study makes it possible to 3-D print and study the skull of the dinosaur species Massospondylus that roamed South Africa 200 million years ago in your own home

January 12, 2018

The digital reconstruction of the skull of a 200-million-year-old South African dinosaur, Massospondylus, has made it possible for researchers to make 3D prints and in this way facilitate research on other dinosaurs all over the world.

Kimi Chapelle, a PhD student at the Evolutionary Studies Institute at the University of the Witwatersrand in Johannesburg, South Africa (Wits), has used the Wits MicroFocus CT facility to peer inside the skull of the dinosaur Massospondylus.

Chapelle was able to use the CT facility to rebuild every bone of Massospondylus’s cranium, and to even look at tiny features like nerves exiting the brain and the balance organs of the inner ear. Her research is published today in the open-access journal, PeerJ.

Along with the paper, which is open for anybody to download and read, a 3D surface file of the skull is available to be downloaded.

“This means any researcher or member of the public can print their own Massospondylus skull at home,” says Chapelle.

Massospondylus is one of the most famous dinosaurs from South Africa and was named in 1854 by the celebrated anatomist Sir Richard Owen. Fossils of Massospondylus have been found in many places in South Africa, including Golden Gate National Park, where James Kitching discovered fossil eggs and embryos in 1976. Surprisingly, the skull of Massospondylus has never been the focus of an in-depth anatomical investigation.

“I was amazed when I started digitally reconstructing Massospondylus’ skull, and found all these features that had never been described”, said Chapelle, “it just goes to show that researchers still have a lot to learn about South Africa’s dinosaurs.”

Some of the most interesting discoveries from the skull, which is described in Chapelle’s paper include:

  • details on how the inner ear and the middle ear contacted each other and what these looked like
  • Where the nerves connecting different parts of the skull to the brain were and which bones they went through
  • that replacement teeth don’t erupt in a specific pattern and are present on all teeth, and
  • that the bones that surround the brain in this specific fossil were not fully fused

“By comparing the inner ear to that of other dinosaurs, we can try and interpret things like how they held their heads and how they moved. You can actually see tiny replacement teeth in the bones of the jaws, showing us that Massospondylus continuously replaced its teeth, like crocodiles do, but unlike humans that can only do it once”, says Chapelle.

“Also, the fact that the bones of the braincase aren’t fully fused means that this particular fossil is that of an individual that is not fully grown yet. This allows us to understand how Massospondylus grew, how fast it grew and how big it could grow.”

Hundreds of Massospondylus fossils have been found in South Africa, ranging in size from hatchlings to adult. Chapelle is using CT technology to study these additional fossils for her PhD. “I’ll be using scans of other specimens to answer new questions,” said Chapelle, “for example, how did Massospondylus babies weighing less than 100g grow up to be half-tonne adults?”

“Students like Kimi have been able to use our CT facility to produce cutting-edge research like this” said Prof. Jonah Choiniere, the supervisor and co-author of the study, “and it’s changing the way we do dinosaur research.”


Small dinosaur discovered in Australia

This 2016 video is called Dinosaurs from Cretaceous Australia.

From PeerJ:

Turkey-sized dinosaur from Australia preserved in an ancient log-jam

New fossil gives fresh insight into the evolution and diversity of the dinosaurs that once inhabited the Australian-Antarctic rift valley 113 million years ago

January 11, 2018

The partial skeleton of a new species of turkey-sized herbivorous dinosaur has been discovered in 113 million year old rocks in southeastern Australia. As reported in open access journal PeerJ, the fossilized tail and foot bones give new insight into the diversity of the small, bipedal herbivorous dinosaurs called ornithopods that roamed the great rift valley that once existed between Australia and Antarctica. The new dinosaur has been named Diluvicursor pickeringi, which means Pickering’s Flood-Running dinosaur.

Lower Cretaceous rocks of the deep sedimentary basins that formed within the Australian-Antarctic rift are now exposed as wave-cut rock platforms and sea-cliffs along the south coast of Victoria. The skeleton of Diluvicursor pickeringi was discovered in 2005 by volunteer prospector George Caspar, eroding from such a rock platform at a locality called Eric the Red West, near Cape Otway.

“Diluvicursor shows for the first time that there were at least two distinct body-types among closely related ornithopods in this part of Australia”, Dr Matt Herne, lead author of the new study said.

“One was lightly built with an extraordinarily long tail, while the other, Diluvicursor, was more solidly built, with a far shorter tail. Our preliminary reconstruction of the tail musculature of Diluvicursor suggests this dinosaur was a good runner, with powerful leg retracting muscles,” Dr Herne said.

“Understanding the ecology of these dinosaurs — what they ate, how they moved, where they roamed — based on the interplay between anatomy and the environment presents exciting challenges for future research.”

The species name honors the late David Pickering, who was Museums Victoria’s Collection Manager, Vertebrate Palaeontology. David contributed significantly to Australian paleontology in the lab and field, and tirelessly assisted countless students of paleontology and researchers to achieve their goals. Sadly, David passed away just over a year ago on Christmas Eve 2016.

The site of Eric the Red West has additional importance as it helps build a picture the ancient rift valley ecosystem. Fossil vertebrate remains at this site were buried in deep scours at the base of a powerful river, along with flood-transported tree stumps, logs and branches.

“The carcass of the Diluvicursor pickeringi holotype appears to have become entangled in a log-jam at the bottom of this river,” explained Dr Herne. “The sizes of some of the logs in the deposit and the abundance of wood suggest the river traversed a well-forested floodplain. The logs preserved at the site are likely to represent conifer forests of trees within families still seen in Australia today.”

“Much of the fossil vertebrate material from Eric the Red West has yet to be described, so further dinosaurs and other exciting animals from this site are now anticipated.”


Birds and dinosaurs’ breathing

This video says about itself:

6 August 2014

Dinosaurs evolved over millions of years into the modern birds we see today! How did such large creatures become so small? Trace is here to tell you the answer.

From the University of Bonn in Germany:

Birds and dinosaurs: High-performance breathing in bones

Origin of unique respiratory system of birds and dinosaurs

January 3, 2018

Summary: Dinosaurs are far from ‘extinct’, but dominate as birds still most regions of the globe. Part of this huge success is due to the evolution of air sacs, which are crucial for the high efficiency of their respiratory system. Scientists have analyzed the structure of bones that are in contact with air sacs and found both in extinct and extant species a hitherto unknown type of bony tissue.

“The respiratory organs of vertebrates exhibit a tremendous degree of diversity, but the lung-air sac system of birds is truly unique among extant species”, says Dr. Markus Lambertz from the Institute for Zoology at the University of Bonn in Germany. Air sacs are bellows-like protrusions of the lung, and their volume changes cause the air flow in the separate gas exchanger. This functional separation is crucial for the exceptional efficiency of this respiratory system, but air sacs can do more: they can invade bones, a process called “pneumatization.”

Pneumatized bones are very light, because they are filled with air instead of the more heavy marrow, which was not only important for active flight, but also for the evolution of gigantism in sauropod dinosaurs. Through the presence of the resulting pneumatic cavities, it has long been known that air sac-like structures predate the origin of birds, since they were found both in the gigantic sauropods as well as in carnivorous dinosaurs. However, when and potentially how many times air sacs did evolve was inaccessible until now.

Pneumosteum: a hitherto unknown type of bony tissue as a diagnostic tool

Filippo Bertozzo was pretty surprised when he analyzed the bone structure in the course of his master’s thesis at the Steinmann-Institute for Geology, Mineralogy and Paleontology of the University of Bonn: “Bones that are in contact with air sacs exhibit a unique structure composed of very fine and densely packed fibers. After it turned out that this was true both in modern birds and extinct dinosaurs, we proposed to name this special kind of bony tissue “pneumosteum””.

Especially astonishing was the fact that pneumosteum was not only restricted to pneumatized bones, but was also found on the surface of conspicuous cavities present in cervical vertebrae of sauropod dinosaurs. Dr. Lambertz adds: “Such cavities had already previously been hypothesized as potential locations of air sacs, but only our microscopic analysis now provides convincing arguments for this.”

Other soft tissues, such as muscles, can leave traces in bone as well. “There are several types of fibers within bone tissue, but the pneumosteum is markedly different from them,” explains Prof. Dr. Martin Sander from the Steinmann-Institute in Bonn. This characteristic individuality of the pneumosteum thus makes it an excellent diagnostic tool for recognizing bones that were in contact with air sacs.

Access to the past and potential for future research

Given that pneumosteum was only discovered in the dinosaurian lineage now provides the opportunity to trace the evolutionary origin of air sacs. Especially the fact that pneumosteum is not restricted to pneumatized bones but was also found on bone surfaces opens up access to studying species that might have exhibited air sacs as part of their respiratory system, but lack obviously pneumatized bones.

Fossilization of air sacs is nearly impossible because their delicate structure is composed of only a few layers of cells. Professor Sander thus is convinced that the discovery of pneumosteum will lead to a greatly improved understanding of the evolution of the dinosaurian respiratory system. Dr. Lambertz concludes with: “This project once again highlights the importance of the interdisciplinary collaboration between zoologists and paleontologists for elucidating evolutionary history.”