Oldest giant ichthyosaur discovery


Cymbospondylus

Cymbospondylus

From ScienceDaily, 23 December 2021, by the Natural History Museum of Los Angeles County in the USA:

The two-meter skull of a newly discovered species of giant ichthyosaur, the earliest known, is shedding new light on the marine reptiles’ rapid growth into behemoths of the Dinosaurian oceans, and helping us better understand the journey of modern cetaceans (whales and dolphins) to becoming the largest animals to ever inhabit the Earth.

While dinosaurs ruled the land, ichthyosaurs and other aquatic reptiles (that were emphatically not dinosaurs) ruled the waves, reaching similarly gargantuan sizes and species diversity. Evolving fins and hydrodynamic body-shapes seen in both fish and whales, ichthyosaurs swam the ancient oceans for nearly the entirety of the Age of Dinosaurs.

“Ichthyosaurs derive from an as yet unknown group of land-living reptiles and were air-breathing themselves,” says lead author Dr. Martin Sander, paleontologist at the University of Bonn and Research Associate with the Dinosaur Institute at the Natural History Museum of Los Angeles County (NHM). “From the first skeleton discoveries in southern England and Germany over 250 years ago, these ‘fish-saurians’ were among the first large fossil reptiles known to science, long before the dinosaurs, and they have captured the popular imagination ever since.”

Excavated from a rock unit called the Fossil Hill Member in the Augusta Mountains of Nevada, the well-preserved skull, along with part of the backbone, shoulder, and forefin, date back to the Middle Triassic (247.2-237 million years ago), representing the earliest case of an ichthyosaur reaching epic proportions. As big as a large sperm whale at more than 17 meters (55.78 feet) long, the newly named Cymbospondylus youngorum is the largest animal yet discovered from that time period, on land or in the sea. In fact, it was the first giant creature to ever inhabit the Earth that we know of.

“The importance of the find was not immediately apparent,” notes Dr. Sander, “because only a few vertebrae were exposed on the side of the canyon. However, the anatomy of the vertebrae suggested that the front end of the animal might still be hidden in the rocks. Then, one cold September day in 2011, the crew needed a warm-up and tested this suggestion by excavation, finding the skull, forelimbs, and chest region.”

The new name for the species, C. youngorum, honors a happy coincidence, the sponsoring of the fieldwork by Great Basin Brewery of Reno, owned and operated by Tom and Bonda Young, the inventors of the locally famous Icky beer which features an ichthyosaur on its label.

In other mountain ranges of Nevada, paleontologists have been recovering fossils from the Fossil Hill Member’s limestone, shale, and siltstone since 1902, opening a window into the Triassic. The mountains connect our present to ancient oceans and have produced many species of ammonites, shelled ancestors of modern cephalopods like cuttlefish and octopuses, as well as marine reptiles. All these animal specimens are collectively known as the Fossil Hill Fauna, representing many of C. youngorum’s prey and competitors.

C. youngorum stalked the oceans some 246 million years ago, or only about three million years after the first ichthyosaurs got their fins wet, an amazingly short time to get this big. The elongated snout and conical teeth suggest that C. youngorum preyed on squid and fish, but its size meant that it could have hunted smaller and juvenile marine reptiles as well.

The giant predator probably had some hefty competition. Through sophisticated computational modeling, the authors examined the likely energy running through the Fossil Hill Fauna’s food web, recreating the ancient environment through data, finding that marine food webs were able to support a few more colossal meat-eating ichthyosaurs. Ichthyosaurs of different sizes and survival strategies proliferated, comparable to modern cetaceans’ — from relatively small dolphins to massive filter-feeding baleen whales, and giant squid-hunting sperm whales.

Co-author and ecological modeler Dr. Eva Maria Griebeler from the University of Mainz in Germany notes, “due to their large size and resulting energy demands, the densities of the largest ichthyosaurs from the Fossil Hill Fauna including C. youngourum must have been substantially lower than suggested by our field census. The ecological functioning of this food web from ecological modeling was very exciting as modern highly productive primary producers were absent in Mesozoic food webs and were an important driver in the size evolution of whales.”

Whales and ichthyosaurs share more than a size range. They have similar body plans, and both initially arose after mass extinctions. These similarities make them scientifically valuable for comparative study. The authors combined computer modeling and traditional paleontology to study how these marine animals reached record-setting sizes independently.

“One rather unique aspect of this project is the integrative nature of our approach. We first had to describe the anatomy of the giant skull in detail and determine how this animal is related to other ichthyosaurs,” says senior author Dr. Lars Schmitz, Associate Professor of Biology at Scripps College and Dinosaur Institute Research Associate. “We did not stop there, as we wanted to understand the significance of the new discovery in the context of the large-scale evolutionary pattern of ichthyosaur and whale body sizes, and how the fossil ecosystem of the Fossil Hill Fauna may have functioned. Both the evolutionary and ecological analyses required a substantial amount of computation, ultimately leading to a confluence of modeling with traditional paleontology.”

They found that while both cetaceans and ichthyosaurs evolved very large body sizes, their respective evolutionary trajectories toward gigantism were different. Ichthyosaurs had an initial boom in size, becoming giants early on in their evolutionary history, while whales took much longer to reach the outer limits of huge. They found a connection between large size and raptorial hunting — think of a sperm whale diving down to hunt giant squid — and a connection between large size and a loss of teeth — think of the giant filter-feeding whales that are the largest animals ever to live on Earth.

Ichthyosaurs’ initial foray into gigantism was likely thanks to the boom in ammonites and jawless eel-like conodonts filling the ecological void following the end-Permian mass extinction. While their evolutionary routes were different, both whales and ichthyosaurs relied on exploiting niches in the food chain to make it really big.

“As researchers, we often talk about similarities between ichthyosaurs and cetaceans, but rarely dive into the details. That’s one way this study stands out, as it allowed us to explore and gain some additional insight into body size evolution within these groups of marine tetrapods,” says NHM’s Associate Curator of Mammalogy (Marine Mammals), Dr. Jorge Velez-Juarbe. “Another interesting aspect is that Cymbospondylus youngorum and the rest of the Fossil Hill Fauna are a testament to the resilience of life in the oceans after the worst mass extinction in Earth’s history. You can say this is the first big splash for tetrapods in the oceans.”

C. youngorum will be permanently housed at the Natural History Museum of Los Angeles County, where it is currently on view.

Studying curlew in England


This 1 October 2021 video from England says about itself:

Harry Ewing, PhD student at the University of East Anglia and BTO, shares his research into Curlew in Breckland, tells us how the COVID-19 pandemic affected his work and thanks BTO major donors for supporting an extra field season to gather more data on this declining species.

310-million-year-old horseshoe crab brain discovery


The brain (white at center) of an extinct horseshoe crab called Euproops danae was fossilized in a clay mineral called kaolinite. The whole crab stretches only about 10 millimeters. R. Bicknell

By Rebecca Dzombak:

August 20, 2021 at 8:00 am

How fossilization preserved a 310-million-year-old horseshoe crab’s brain

A newly analyzed specimen is a ‘one-in-a-million’ find, researchers say

Paleontologists can spend years carefully splitting rocks in search of the perfect fossil. But with a 310-million-year-old horseshoe crab brain, nature did the work, breaking the fossil in just the right way to reveal the ancient arthropod’s central nervous system.

Of all soft tissues, brains are notoriously difficult to preserve in any form (SN: 10/31/16). Stumbling across such a detailed specimen purely by chance was “a one-in-a-million find, if not rarer,” says evolutionary paleontologist Russell Bicknell of the University of New England in Armidale, Australia.

The fossilized brain is remarkably similar to the brains of modern horseshoe crabs, giving clues to the arthropods’ evolution, Bicknell and colleagues report July 26 in Geology. And the brain’s peculiar mode of preservation could point paleontologists toward new places to look for hard-to-find fossils of soft tissues.

Pioneer all-women punk band Lou’s biography updated


In this live music video, pioneer all-women punk band the Lou’s play No escape, in July 1978 in the Olympia in Paris, as support band of John Lydon (aka Rotten)’s band Public Image Ltd (PIL).

PIL liked the Lou’s so well that they also played twice with them in the Rainbow Theatre in London in December 1978.

Other bands with whom they played: eg, Siouxsie and the Banshees, Sham 69, the Mekons and Subway Sect.

The Lou’s were three French women and Dutch drummer Saskia aka Sascha aka Syama de Jong.

In 1979 two of the Lou’s, Ms de Jong on drums and Raphaelle Devins on saxophone, joined London band Verdict. They played many concerts for Rock Against Racism.

In 1980 Sascha and Raphaelle went to Leiden in the Netherlands. Sascha de Jong founded the all-women Miami Beach Girls. Raphaelle joined the mixed-gender band Cheap ‘n’ Nasty.

The biography of the Lou’s on Last.fm was updated today.

Bahamas bonefish dive deep for spawning


This September 2015 video from the United States Virgin Islands says about itself:

Bonefish, (Albula vulpes); Lackland Marine Sanctuary U.S.V.I.

From Florida Atlantic University in the USA:

Stunning discovery reveals bonefish dive 450 feet ‘deep’ into the abyss to spawn

December 7, 2020

Summary: Using active acoustic telemetry and sonar data, a study provides the first detailed documentation of a shallow-water fish diving 450 feet deep to spawn. Prior research has shown that bonefish dive about 164 feet to spawn, but this new and unprecedented study reveals that they reached depths of 450 feet, and moved below 325 feet for two hours before spawning in a rush upward to 220 feet deep.

A new study provides the first detailed documentation of a shallow-water fish diving 450 feet deep to spawn. Uncovering this very rare spawning behavior in bonefish (Albula vulpes) is unprecedented. Using active acoustic telemetry and sonar data along the southern shore of Abaco, The Bahamas, a team of scientists led by Florida Atlantic University’s Harbor Branch Oceanographic Institute in collaboration with Bonefish & Tarpon Trust, and University of Massachusetts Amherst, has discovered that although bonefish live in shallow waters less than 6 feet, they dive “deep” into the abyss to spawn.

While prior research in 2013 showed that bonefish descended approximately 164 feet to spawn, this new scientific finding reveals that bonefish descended to depths reaching 450 feet, and moved below 325 feet for two hours before spawning in a rush upward to 220 feet deep. Findings from the study, published in the journal Marine Biology, will be instrumental for conservation efforts for this economically and culturally important fish species.

“We were stunned by this discovery because the bonefish moved out beyond the incredibly abrupt and steep shelf drop off into the Providence Channel in Abaco,” said Steven Lombardo, first author and a Ph.D. candidate who works with Matt Ajemian, Ph.D., senior author, an assistant research professor at FAU’s Harbor Branch and head of the Fisheries Ecology and Conservation (FEC) Lab. “Data from our acoustic telemetry tags showed us in real time that bonefish were capable of handling extreme pressures. When they reached 334 feet in the first dive, we were floored, and 45 minutes later when they reached 450 feet deep, we were absolutely astonished.”

Active acoustic telemetry enabled the scientists to observe the spawning movements and is a method that employs small pill-like tags that are surgically implanted into the fish’s abdominal cavity, emitting an ultrasonic ping every three seconds. Researchers listened for the pings emitted from the tags using a boat-mounted directional hydrophone, using the strength of the signal communicated from the tag to the hydrophone to determine what direction to move the boat and follow the fish. Each ping transmitted by the tag inside the fish relayed data to the scientists, informing them of the depth of the fish’s location and the water temperature.

The researchers spent four days from sunrise to sunset observing the bonefish pre-spawning aggregation in hopes that they would move offshore to spawn. At sunset on the final scheduled night of their research cruise, bonefish began “porpoising,” where they gulped air at the surface, and then proceeded to move offshore following the edge of the continental shelf. The successful observation of bonefish spawning capped an 18-hour shift on the water, spanning two days.

“Following the bonefish on their offshore spawning migration was a marathon for the science team as well as the fish,” said Aaron Adams, Ph.D., co-author, senior scientist at FAU’s Harbor Branch and director of science and conservation at Bonefish & Tarpon Trust. “Most importantly for conservation, now that we know the conditions bonefish require to spawn we can better focus our efforts for habitat conservation.”

When many species of coastal marine fish spawn, they spawn in groups known as spawning aggregations, which are mixed males and females. These fishes follow a process known as “broadcast spawning” in which the males and females eject sperm and eggs into the open water where the eggs are fertilized. The eggs hatch in about a day, and the tiny larvae that hatch from the eggs live in the open ocean as plankton for days to months, depending on the species, before finding shallow water and becoming juveniles. Adults of many of these species migrate long distances from their home ranges to spawning locations, often spawning on the edges of reefs adjacent to deep water.

Unlike other coastal marine fishes, the bonefish partakes in a unique three-point spawning migration, traveling up to 70 miles from shallow water home flats to form nearshore pre-spawning aggregations before moving offshore to reproduce. Once at the pre-spawning location, they gather in large groups often numbering anywhere from 5,000 to 10,000 bonefish.

“Despite their economic and cultural importance, there are concerns about the long-term health of the bonefish fishery. Because of habitat loss and harvest in some locations, bonefish are classified as ‘Near Threatened,’ therefore information on their reproduction is critical to conservation efforts,” said Ajemian. “We are continuing our work on the offshore spawning movements of bonefish. We will be observing more spawning events at different locations and also will characterize what larval bonefish may be feeding on at these great depths.”

This research will support the ongoing efforts of the Bonefish Reproduction Research Project at FAU’s Harbor Branch, informing techniques used to rear captive spawned bonefish larvae through the feeding phase of development and beyond.

Australian greater gliders three species, not one


This 2017 video from Australia is called Greater Glider (Petauroides volans), gliding possum, Strathbogie State Forest 1.

From James Cook University in Australia:

Greater glider species triple

One of Australia’s best-loved marsupials is actually three different species

November 21, 2020

A team of researchers from James Cook University (JCU), The Australian National University (ANU), the University of Canberra and CSIRO analysed the genetic make-up of the greater glider — a possum-sized marsupial that can glide up to 100 metres.

JCU’s PhD student Denise McGregor and Professor Andrew Krockenberger were part of a team that confirmed a long-held theory that the greater glider is actually multiple species.

As a part of her PhD project to understand why greater gliders varied so much across their range, Ms McGregor discovered that the genetic differences between the populations she was looking at were profound.

“There has been speculation for a while that there was more than one species of greater glider, but now we have proof from the DNA. It changes the whole way we think about them,” she said.

“Australia’s biodiversity just got a lot richer. It’s not every day that new mammals are confirmed, let alone two new mammals,” said Professor Krockenberger.

“Differences in size and physiology gave us hints that the one accepted species was actually three. For the first time, we were able to use Diversity Arrays (DArT) sequencing to provide genetic support for multiple species,” he said.

Greater gliders, much larger than the more well-known sugar gliders, eat only eucalyptus leaves and live in forests along the Great Dividing Range from northern Queensland to southern Victoria. Once common, they are now listed as ‘vulnerable’, with their numbers declining.

Dr Kara Youngentob, a co-author from ANU, said the identification and classification of species are essential for effective conservation management.

“This year Australia experienced a bushfire season of unprecedented severity, resulting in widespread habitat loss and mortality. As a result, there’s been an increased focus on understanding genetic diversity and structure of species to protect resilience in the face of climate change,” she said.

The division of the greater glider into multiple species reduces the previous widespread distribution of the original species, further increasing conservation concern for that animal and highlighting the lack of information about the other greater glider species,”said Dr Youngentob.

She said there have been alarming declines in greater glider populations in the Blue Mountains, NSW and Central Highlands, Victoria and localised extinctions in other areas.

“The knowledge that there is now genetic support for multiple species, with distributions that are much smaller than the range of the previously recognised single species, should be a consideration in future conservation status decisions and management legislation,” Dr Youngentob said.

Bromeliad plants and hummingbirds, new research


This 1 December 2020 video says about itself:

Bromeliads: the explosive plant family

The Linnean Society of London publishes three peer-reviewed scientific journals in biology, botany and zoology. The journals cover original scientific papers and studies.

Extinct walrus species discovery in California, USA


This July 2020 video says about itself:

The rise and fall of ancient walruses, and how modern ones got their tusks, is a story that spans almost 20 million years. And while there are parts of the story that we’re still trying to figure out, it looks like tusks didn’t have anything to do with how or what these animals ate.

From ScienceDaily:

Paleontologists uncover three new species of extinct walruses in Orange County, California

Study gives insight to tusk evolution of the marine mammal

November 16, 2020

Millions of years ago, in the warm Pacific Ocean off the coast of Southern California, walrus species without tusks lived abundantly.

But in a new study, Cal State Fullerton paleontologists have identified three new walrus species discovered in Orange County and one of the new species has “semi-tusks” — or longer teeth.

The other two new species don’t have tusks and all predate the evolution of the long iconic ivory tusks of the modern-day walrus, which lives in the frigid Arctic.

The researchers describe a total of 12 specimens of fossil walruses from Orange, Los Angeles and Santa Cruz counties, all estimated to be 5 to 10 million years old. The fossils represent five species, with two of the three new species represented by specimens of males, females and juveniles.

Their research, which gives insights on the dental and tusk evolution of the marine mammal, was published today in the Journal of Vertebrate Paleontology.

Geology graduate Jacob Biewer, and his research adviser James F. Parham, associate professor of geological sciences, are authors of the study, based on fossil skull specimens.

Parham and Biewer worked with Jorge Velez-Juarbe, an expert in marine mammals at the Natural History Museum of Los Angeles County, who is a co-author of the paper. Velez-Juarbe is a former postdoctoral scholar in Parham’s lab and has collaborated on other CSUF fossil research projects. Parham is a research associate at the museum, which provides research opportunities for him and his students.

The researchers teamed to study and describe the anatomy of the specimens, most of which are part of the museum’s collection.

“Orange County is the most important area for fossil walruses in the world,” said Biewer, first author of the paper who conducted the research for his master’s thesis. “This research shows how the walruses evolved with tusks.”

Extinct Walrus Species Get Names

Today, there is only one walrus species and its scientific name is Odobenus.

For the new species found in Orange County, the researchers named the semi-tusked walrus, Osodobenus eodon, by combining the words Oso and Odobenus. Another is named Pontolis kohnoi in honor of Naoki Kohno, a fossil walrus researcher from Japan. Both of these fossils were discovered in the Irvine, Lake Forest and Mission Viejo areas.

Osodobenus eodon and Pontolis kohnoi are both from the same geological rock layer as the 2018 study by Parham and his students of another new genus and species of a tuskless walrus, Titanotaria orangensis, named after CSUF Titans. These fossils were found in the Oso Member of the Capistrano Formation, a geological formation near Lake Forest and Mission Viejo.

The third new walrus species, Pontolis barroni, was found in Aliso Viejo, near the 73 Toll Road. It is named after John Barron, a retired researcher from the U.S.Geological Survey and world expert on the rock layer where the specimens were found, Parham said.

Analysis of these specimens show that fossil walrus teeth are more variable and complex than previously considered. Most of the new specimens predate the evolution of tusks, Parham said.

“Osodobenus eodon is the most primitive walrus with tusk-like teeth,” Parham said. “This new species demonstrates the important role of feeding ecology on the origin and early evolution of tusks.”

Biewer explained that his work focused on getting a better understanding of the evolutionary history of the walrus in regards to its teeth.

“The importance of dental evolution is that it shows the variability within and across walrus species. Scientists assumed you could identify certain species just based on the teeth, but we show how even individuals of the same species could have variability in their dental setup,” said Biewer, who earned a master’s degree in geology in 2019.

“Additionally, everyone assumes that the tusks are the most important teeth in a walrus, but this research further emphasizes how tusks were a later addition to the history of walruses. The majority of walrus species were fish eaters and adapted to catching fish, rather than using suction feeding on mollusks like modern walruses.”

Biewer, now a paleontologist in the Modesto area, also examined whether climate changes in the Pacific Ocean had an impact on ancient walruses. His work suggests that a rise in water temperature helped to boost nutrients and planktonic life, and played a role in the proliferation of walruses about 10 million years ago, which may have contributed to their diversity.

Background

For the fossil walrus research project, geology graduate Jacob Biewer spent hours in the lab measuring and describing the walrus bones.

“I sat many hours with a handy caliper taking notes on the lengths of teeth and width of skulls, among many other measurements,” he said. “Describing bones is much more in-depth and meticulous than it sounds. There are traits that the bones of each walrus species have — the size, shape and number of teeth. I recorded how the bones are different from, or similar to, other extinct walrus species.”

Biewer, a paleontologist who lives in Modesto, noted that despite the pandemic, he and Parham worked on the scientific paper with 300 miles of social distancing.

Completing his first journal publication, based on his master’s work, and conducting the research project helped him to understand scientific methods and techniques that he now uses in his career, where he monitors construction sites for paleontological resources. He also teaches undergraduate geology courses at Cal State Stanislaus, where he earned a bachelor’s degree in geology, and is considering pursuing a doctorate.

“The experiences I had in conducting this research, especially the presentations at national paleontological conferences, led to a big increase in my confidence in my scientific abilities,” Biewer said. “I credit my time working with Dr. Parham directly to the achievements in my current employment — from the skills he imparted to the doors he helped open.”

Cougars and foxes in Chile, new research


This 2017 video from Ecuador is called Andean Fox (Culpeo)!

From Virginia Tech university in the USA:

What does the fox say to a puma?

Predators form an unusual coexistence in the central Chilean Andes

November 13, 2020

Summary: Researchers have found that in the Chilean Andes, two predator species — the puma and the culpeo fox — can successfully share a landscape and hunt for food over the same nighttime hours because they are, in essence, ordering from different menus.

In the high plains of the central Chilean Andes, an ecosystem consisting of only a few animal species is providing researchers with new insights into how predators coexist in the wild.

“The puma and the culpeo fox are the only top predators on the landscape in the Chilean Andes,” said Professor Marcella Kelly, of the College of Natural Resources and Environment. “And there isn’t a wide range of prey species, in part because the guanacos [closely related to llamas] aren’t typically found in these areas anymore due to over-hunting. With such a simplified ecosystem, we thought we could really nail down how two rival predators interact.”

Kelly worked with Christian Osorio, a doctoral student in the Department of Fish and Wildlife Conservation, and researchers from the Pontifical Catholic University of Chile to chart the locations of and potential interactions between pumas and foxes in central Chile. They focused on three axes of interaction: spatial (where the animals are on the landscape), temporal (the timing of specific activities on a given landscape), and dietary (what each species is eating).

To understand the interplay between pumas and foxes, researchers deployed 50 camera stations across two sites in central Chile, one in the Rio Los Cipreses National Reserve and another on private land where cattle and horses are raised. They also collected scat samples at both locations to analyze the diets of pumas and foxes.

The team’s findings, published in the journal Diversity, showed that while pumas and foxes overlapped significantly where they lived and what time they were active, there was little overlap in what they were eating, with the puma diet consisting primarily of a large hare species introduced from Europe, while the culpeo foxes favored smaller rabbits, rodents, and seeds. The two predator species can successfully share a landscape and hunt for food over the same nighttime hours because they are, in essence, ordering from different menus.

“It is likely that foxes have realized that when they try to hunt hares, they might run into trouble with pumas,” Osorio explained. “If they are hunting smaller mammals, the pumas don’t care, but if the foxes start targeting larger prey, the pumas will react.”

How predator species interact is a crucial question for ecologists trying to understand the dynamics that inform ecosystem balances. And while the puma has been designated a species of least concern, the animal’s populations are declining and continue to be monitored by conservationists.

“Least concern does not mean no concern,” Osorio noted. “We have laws in Chile that protect the species, but the data we have to make a conservation designation are very scattered. As we accumulate more consistent and reliable data, the puma may be reclassified as vulnerable or even endangered.”

The hares that comprise approximately 70 percent of the biomass in the puma’s diet are a nonnative species, introduced to the area by European settlers. With guanacos absent from the landscape, the puma has had to adapt its diet to survive.

With some land managers and conservationists campaigning for the removal of the introduced hare species as a way to restore the area’s native ecosystem, Kelly and Osorio note that it is important to understand that pumas would be significantly impacted by a reduction in their primary food source.

A further concern, which the two are currently researching, is the interplay between wildlife and humans. The national reserve increasingly sees visitors eager to witness big cats and foxes in their natural environment, while the sheep and cattle industries are increasingly using remote terrain for livestock cultivation.

“Pumas do occasionally kill livestock, which is a challenge we’re looking into right now,” said Kelly, an affiliate of Virginia Tech’s Fralin Life Sciences Institute. “The government would like to preserve the puma, but there are competing challenges of what kind of threat they pose to livestock and what kind of threat cattle or sheep farming poses to them.”

Understanding how two predatory species can come to coexist has the potential to provide conservationists and ecologists with better ideas for how humans and wild animals can share a landscape.