New telescope use improves astronomers’ quasar science

This video says about itself:

13 August 2015

The Spektr-R[6] (or RadioAstron) is a Russian scientific satellite with a 10 m (33 ft) radio telescope on board. It rivals the U.S Hubble space telescope. It was launched on the 18th of July 2011. Uses in astrophysics, cosmology, studies of black holes and exoplanets etc.

From Space Fellowship:

Earth-Space Telescope System Produces Hot Surprise

Published by Klaus Schmidt on Tue Mar 29, 2016 8:43 pm

Astronomers using an orbiting radio telescope in conjunction with four ground-based radio telescopes have achieved the highest resolution, or ability to discern fine detail, of any astronomical observation ever made. Their achievement produced a pair of scientific surprises that promise to advance the understanding of quasars, supermassive black holes at the cores of galaxies.

The scientists combined the Russian RadioAstron satellite with the ground-based telescopes to produce a virtual radio telescope more than 100,000 miles across. They pointed this system at a quasar called 3C 273, more than 2 billion light-years from Earth. Quasars like 3C 273 propel huge jets of material outward at speeds nearly that of light. These powerful jets emit radio waves.

Just how bright such emission could be, however, was thought to be limited by physical processes. That limit, scientists thought, was about 100 billion degrees. The researchers were surprised when their Earth-space system revealed a temperature hotter then 10 trillion degrees.

“Only this space-Earth system could reveal this temperature, and now we have to figure out how that environment can reach such temperatures,” said Yuri Kovalev, the RadioAstron project scientist. “This result is a significant challenge to our current understanding of quasar jets,” he added.

The observations also showed, for the first time, substructure caused by scattering of the radio waves by the tenuous interstellar material in our own Milky Way Galaxy.

“This is like looking through the hot, turbulent air above a candle flame,” said Michael Johnson, of the Harvard-Smithsonian Center for Astrophysics. “We had never been able to see such distortion of an extragalactic object before,” he added.

“The amazing resolution we get from RadioAstron working with the ground-based telescopes gives us a powerful new tool to explore not only the extreme physics near the distant supermassive black holes, but also the diffuse material in our home Galaxy,” Johnson said.

The RadioAstron satellite was combined with the Green Bank Telescope in West Virginia, The Very Large Array in New Mexico, the Effelsberg Telescope in Germany, and the Arecibo Observatory in Puerto Rico. Signals received by the orbiting radio telescope were transmitted to an antenna in Green Bank where they were recorded and then sent over the internet to Russia where they were combined with the data received by the ground-based radio telescopes to form the high resolution image of 3C 273.

The astronomers reported their results in the Astrophysical Journal Letters.

In 1963, astronomer Maarten Schmidt of Caltech recognized that a visible-light spectrum of 3C 273 indicated its great distance, resolving what had been a mystery about quasars. His discovery showed that the objects are emitting tremendous amounts of energy and led to the current model of powerful emission driven by the tremendous gravitational energy of a supermassive black hole.

The RadioAstron project is led by the Astro Space Center of the Lebedev Physical Institute of the Russian Academy of Sciences and the Lavochkin Scientific and Production Association under a contract with the Russian Federal Space Agency, in collaboration with partner organizations in Russia and other countries. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

See also here.

Mars spacecraft narrowly avoids exploding booster

This video says about itself:

Replay of the ExoMars 2016 liftoff on a Proton-M rocket from Baikonur, Kazakhstan at 09:31 GMT on 14 March 2016.

Credit: ESA/Euronews

From Universe Today:

ExoMars Mission Narrowly Avoids Exploding Booster

24 March 2016 by Bob King

On March 14, the ExoMars mission successfully lifted off on a 7-month journey to the planet Mars but not without a little surprise. The Breeze-M upper booster stage, designed to give the craft its final kick toward Mars, exploded shortly after parting from the probe. Thankfully, it wasn’t close enough to damage the spacecraft.

Michel Denis, ExoMars flight director at the European Space Operations, Center in Darmstadt, Germany, said that the two craft were many kilometers apart at the time of the breakup, so the explosion wouldn’t have posed a risk. Still, the mission team won’t be 100% certain until all the science instruments are completely checked over in the coming weeks.

Spaceship ExoMars 2016 to Mars today

This video says about itself:

ExoMars 2016: launch to Mars

17 February 2016

Animation visualising milestones during the launch of the ExoMars 2016 mission and its cruise to Mars. The mission comprises the Trace Gas Orbiter and an entry, descent and landing demonstrator module, Schiaparelli, which are scheduled to be launched on a four-stage Proton-M/Breeze-M rocket from Baikonur during the 14–25 March 2016 window.

About ten-and-a-half hours after launch, the spacecraft will separate from the rocket and deploy its solar wings. Two weeks later, its high-gain antenna will be deployed. After a seven-month cruise to Mars, Schiaparelli will separate from TGO on 16 October. Three days later it will enter the martian atmosphere, while TGO begins its entry into Mars orbit.

From Universe Today:

Countdown Begins for Blastoff of ExoMars 2016 Spacecraft on March 14 – Watch Live

The countdown has begun for blastoff of the ambitious European/Russian ExoMars 2016 spacecraft from the Baikonur Cosmodrome in Kazakhstan on March 14. Its goal is to search for minute signatures of methane gas that could possibly be an indication of life or of nonbiologic geologic processes ongoing today.

Final launch preparations are now in progress. Liftoff of the powerful Russian Proton booster from Baikonur carrying the ExoMars spacecraft is slated for 5:31:42 a.m. EDT (0931:42 GMT), Monday morning, March 14.

You can watch the launch live courtesy of a European Space Agency (ESA) webcast:

The prelaunch play by play begins with live streaming at 4:30 a.m. EDT (08:30 GMT).

The first acquisition of signal from the spacecrft is expected at 21:29 GMT.

New planetarium show at California Academy of Sciences

This video from the USA says about itself:

California Academy of Sciences

9 March 2016

Incoming! opens Friday, March 11. Narrated by George Takei, this all-new planetarium show invites you to discover how asteroids and comets have shaped our cosmic origins. Learn more here.

Most remote galaxy ever discovered

This video from the USA says about itself:

Hubble Team Breaks Cosmic Distance Record

3 March 2016

This animation shows the location of galaxy GN-z11, which is the farthest galaxy ever seen. The video begins by locating the Big Dipper, then showing the constellation Ursa Major. It then zooms into the GOODS North field of galaxies, and ends with a Hubble image of the young galaxy. GN-z11 is shown as it existed 13.4 billion years in the past, just 400 million years after the big bang, when the universe was only three percent of its present age.

From the Hubble Space Telescope site:

Hubble breaks cosmic distance record

3 March 2016

By pushing the NASA/ESA Hubble Space Telescope to its limits astronomers have shattered the cosmic distance record by measuring the distance to the most remote galaxy ever seen in the Universe. This galaxy existed just 400 million years after the Big Bang and provides new insights into the first generation of galaxies. This is the first time that the distance of an object so far away has been measured from its spectrum, which makes the measurement extremely reliable. The results will be published in the Astrophysical Journal.

Using the NASA/ESA Hubble Space Telescope an international team of astronomers has measured the distance to this new galaxy, named GN-z11. Although extremely faint, the galaxy is unusually bright considering its distance from Earth. The distance measurement of GN-z11 provides additional strong evidence that other unusually bright galaxies found in earlier Hubble images are really at extraordinary distances, showing that we are closing in on the first galaxies that formed in the Universe.

Previously, astronomers had estimated GN-z11’s distance by analysing its colour in images taken with both Hubble and the NASA Spitzer Space Telescope. Now, for the first time for a galaxy at such an extreme distance, the team has used Hubble’s Wide Field Camera 3 (WFC3) to precisely measure the distance to GN-z11 spectroscopically by splitting the light into its component colours.

“Our spectroscopic observations reveal the galaxy to be even further away than we had originally thought, right at the distance limit of what Hubble can observe,” explains Gabriel Brammer of the Space Telescope Science Institute and second author of the study.

This puts GN-z11 at a distance that was once thought only to be reachable with the upcoming NASA/ESA/CSA James Webb Space Telescope (JWST) [1].

“We’ve taken a major step back in time, beyond what we’d ever expected to be able to do with Hubble. We managed to look back in time to measure the distance to a galaxy when the Universe was only three percent of its current age,” says Pascal Oesch of Yale University and lead author of the paper.

To determine large distances, like the one to GN-z11, astronomers measure the redshift of the observed object. This phenomenon is a result of the expansion of the Universe; every distant object in the Universe appears to be receding from us and as a result its light is stretched to longer, redder wavelengths.

Before astronomers determined the distance to GN-z11, the most distant measured galaxy, EGSY8p7, had a redshift of 8.68. Now, the team has confirmed GN-z11’s distance to be at a redshift of 11.1, which corresponds to 400 million years after the Big Bang.

“The previous record-holder was seen in the middle of the epoch when starlight from primordial galaxies was beginning to heat and lift a fog of cold, hydrogen gas,” explains co-author Rychard Bouwens from the University of Leiden, the Netherlands. “This transitional period is known as the reionisation era. GN-z11 is observed 150 million years earlier, near the very beginning of this transition in the evolution of the Universe.”

The combination of observations taken by Hubble and Spitzer revealed that the infant galaxy is 25 times smaller than the Milky Way and has just one percent of our galaxy’s mass in stars. However, the number of stars in the newborn GN-z11 is growing fast: The galaxy is forming stars at a rate about 20 times greater than the Milky Way does today [2]. This high star formation rate makes the remote galaxy bright enough for Hubble to see and to perform detailed observations.

However, the discovery also raises many new questions as the existence of such a bright and large galaxy is not predicted by theory. “It’s amazing that a galaxy so massive existed only 200 million to 300 million years after the very first stars started to form. It takes really fast growth, producing stars at a huge rate, to have formed a galaxy that is a billion solar masses so soon,” explains Garth Illingworth of the University of California, Santa Cruz.

Marijn Franx, a member of the team from the University of Leiden highlights: “The discovery of GN-z11 was a great surprise to us, as our earlier work had suggested that such bright galaxies should not exist so early in the Universe.” His colleague Ivo Labbe adds: “The discovery of GN-z11 showed us that our knowledge about the early Universe is still very restricted. How GN-z11 was created remains somewhat of a mystery for now. Probably we are seeing the first generations of stars forming around black holes?”

These findings provide a tantalising preview of the observations that the James Webb Space Telescope will perform. “This new discovery shows that JWST will surely find many such young galaxies reaching back to when the first galaxies were forming,” concludes Illingworth.


[1] The NASA/ESA/CSA James Webb Space Telescope is a collaboration between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA). It is scheduled for launch in 2018.

[2] GN-z11 transforms about 24 solar masses of gas and dust per year into new stars.

Black holes colliding, video

This video says about itself:

11 February 2016

The Sound of Two Black Holes Colliding (Edited Longer Version). By LIGO

In Milestone, Scientists Detect Gravitational Waves As Black Holes Collide: here.

Astronomers from the Laser Interferometer Gravitational-wave Observatory (LIGO) Collaboration have published the first detection of gravitational waves, ripples in the fabric of space and time. The announcement comes almost exactly a century after Albert Einstein, in mid-1916, predicted the existence of the waves on the basis of his Theory of General Relativity: here.

Gravitational waves, new discovery

This video says about itself:

LIGO‘s First Detection of Gravitational Waves! | Space Time | PBS Digital Studios

11 February 2016

Today, over 100 years after Einstein proposed his theory of general relativity, we are proud to announce that his final major prediction has been verified! Gravitational waves have officially been detected by LIGO! We are still getting details as the teams of physicists go over the data, but this is a huge deal, and is an exciting new step in understanding our universe.

See also here.

Publication about this in Physical Review Letters: here.