Dinosaur age lily flower discovery


Cratolirion bognerianum. Credit: Museum für Naturkunde Berlin

From the Helmholtz-Zentrum Berlin für Materialien und Energie in Germany:

Oldest completely preserved lily discovered

115 million years ago, tropical flowering plants were apparently very diverse and showed all typical characteristics

July 11, 2019

Botanist Dr. Clement Coiffard of the Museum für Naturkunde Berlin discovered the oldest, completely preserved lily in the research collection: Cratolirion bognerianum was found in calcareous sediments of a former freshwater lake in Crato in northeastern Brazil. With an age of about 115 million years, Cratolirion is one of the oldest known monocotyledonous plants. These include orchids, sweet grasses, lilies and lilies of the valley.

Cratolirion is extraordinarily well preserved, with all roots, the flower and even the individual cells are fossilised. With a length of almost 40 centimetres, the specimen is not only extremely huge, but also shows almost all the typical characteristics of monocotyledonous plants, including parallel-veined, narrow leaves with a leaf sheath, a fibrous root system and triple flowers.

However, it was not trivial to examine the fossilised object, as it consisted of iron oxides associated with the stone. In order to see details here, Coiffard collaborated with the HZB physicist Dr. Nikolay Kardjilov, who is an expert in 3D analysis with X-rays and neutrons. At the HZB he also built up a 3D computed x-ray tomography and refined the data analysis in such a way that hardly any disturbing artefacts arise during the investigation of large, flat objects. This made it possible to analyse the details of the inflorescence hidden in the stone. A colour coding in the CT scan makes these details visible: the main axis is marked in turquoise, the supporting leaves in dark green, the pistils in light green and the remains of the actual petals can still be seen in orange.

Many early dicotyledonous flowering plants have already been described from the same sediments of the former freshwater lake in Crato. These include water lilies, aron rods, drought-resistant magnolias and relatives of pepper and laurel. In contrast to other flowering plants of the same age from the USA, Portugal, China and Argentina, the flowering plants of the Crato-Flora are unusually diverse. This could be due to the fact that Lake Crato was in the lower latitudes, but all other fossils of early flowering plants come from the middle latitudes.

From this newly described plant Cratolirion bognerianum and the species of Crato flora mentioned above, it can be deduced that the tropical flowering plants were already very diverse. “It is probable that flowering plants originated in the tropics, but only very few fossils have been described to date,” explains Coiffard. This study thus provides new insights into the role of the tropics in the development of early flowering plants and their rise to global supremacy.

Advertisements

Rare lizard orchid re-discovered in the Netherlands


This video is called Wild Orchids – Himantoglossum hircinum (lizard orchid).

Game warden Mark Kras of the coastal sand dunes national park in South Holland province reports today that a rare orchid species has been rediscovered there.

It is the lizard orchid. In 1890, this species disappeared from the area. In 1980, it appeared again. Then, no lizard orchids until 2008. Then, gone again. And now, in 2019, it was found not so far from Katwijk town.

Twelve orchid species grow in this national park. The symbol flower of the park is the pyramid orchid.

Mushrooms’ colours, new research


This 2015 video is about colourful mushrooms.

From the Technical University of Munich (TUM) in Germany:

Mushrooms: Darker fruiting bodies in cold climates

July 2, 2019

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was shrouded in mystery. Researchers at the Technical University of Munich (TUM), in collaboration with the Bavarian Forest National Park, have now put together the first pieces of this puzzle.

In nature, specific colors and patterns normally serve a purpose: The eye-catching patterns of the fire salamander convey to its enemies that it is poisonous. Red cherries presumably attract birds that eat them and thus disperse their seed. Other animals such as chameleons use camouflage coloring to protect themselves from discovery by predators.

But climate also plays a role in coloration: Especially insects and reptiles tend to be darker in colder climates. Cold-blooded animals rely on the ambient temperature to regulate their body temperature. Dark coloration allows them to absorb heat faster. The same mechanism could also play a role in fungi, as the research team of Franz Krah, who wrote his doctoral thesis on the topic at TUM and Dr. Claus Bässler, mycologist at the TUM and coworker in the Bavarian Forest National Park suspect. Mushrooms might benefit from solar energy to improve their reproduction as well.

Distribution of 3054 fungus species studied

To test their theory, the researchers combed through vast volumes of data. They investigated the distribution of 3054 species of fungi throughout Europe. In the process, they analyzed the lightness of their coloration and the prevailing climatic conditions in the respective habitats. The results showed a clear correlation: Fungal communities have darker mushrooms in cold climates. The scientists also accounted for seasonal changes. They discovered that fungal communities that decompose dead plant constituents are darker in spring and autumn than in summer.

“Of course, this is just the beginning,” explains Krah. “It will take much more research before we develop a comprehensive understanding of mushroom colors.” For example, further seasonal coloring effects cannot be detected in fungi that live in symbiosis with trees. “Here, other coloration functions, such as camouflage, also play a role.” The researchers also need to study the degree to which dark coloration influences the reproductive rate of fungi.

Dinosaurs extinct, lichens survived


This 25 January 2018 video says about itself:

What’s in a Lichen? How Scientists Got It Wrong for 150 Years | Short Film Showcase

For 150 years, scientists believed lichen were defined by a symbiotic relationship between a fungus and algae. Meet the team of researchers who upended this belief in this short film by Andy Johnson, Talia Yuki Moore, Chris A. Johns, and Kate Furby.

From the Field Museum in the USA:

When the dinosaurs died, lichens thrived

Mass extinction hurt land plants, but DNA shows that some fungus/plant combo organisms rose up

June 28, 2019

Summary: When the asteroid hit, dinosaurs weren’t the only ones that suffered. Clouds of ash blocked the sun and cooled the planet’s temperature, devastating plant life. But fungi, which decompose dead stuff, did well. So what happened to the lichens, which are made of a plant and fungus living together as one organism?

When an asteroid smacked into the Earth 66 million years ago, it triggered mass extinctions all over the planet. The most famous victims were the dinosaurs, but early birds, insects, and other life forms took a hit too. The collision caused clouds of ash to block the sun and cool the planet’s temperature, devastating plant life. But a new study in Scientific Reports shows that while land plants struggled, some kinds of lichens — organisms made of fungi and algae living together — seized the moment and evolved into new forms to take up plants’ role in the ecosystem.

“We thought that lichens would be affected negatively, but in the three groups we looked at, they seized the chance and diversified rapidly,” says Jen-Pang Huang, the paper’s first author, a former postdoctoral researcher at the Field Museum now at Academia Sinica in Taipei. “Some lichens grow sophisticated 3D structures like plant leaves, and these ones filled the niches of plants that died out.”

The researchers got interested in studying the effects of the mass extinction on lichens after reading a paper about how the asteroid strike also caused many species of early birds to go extinct. “I read it on the train, and I thought, ‘My god, the poor lichens, they must have suffered too, how can we trace what happened to them?'” says Thorsten Lumbsch, senior author on the study and the Field Museum’s curator of lichenized fungi.

You’ve seen lichens a million times, even if you didn’t realize it. “Lichens are everywhere,” says Huang. “If you go on a walk in the city, the rough spots or gray spots you see on rocks or walls or trees, those are common crust lichens. On the ground, they sometimes look like chewing gum. And if you go into a more pristine forest, you can find orange, yellow, and vivid violet colors — lichens are really pretty.” They’re what scientists call “symbiotic organisms” — they’re made up of two different life forms sharing one body and working together. They’re a partnership between a fungus and an organism that can perform photosynthesis, making energy from sunlight — either a tiny algae plant, or a special kind of blue-green bacterium. Fungi, which include mushrooms and molds, are on their own branch on the tree of life, separate from plants and animals (and actually more closely related to us than to plants). The main role of fungi is to break down decomposing material.

During the mass extinction 66 million years ago, plants suffered since ash from the asteroid blocked out sunlight and lowered temperatures. But the mass extinction seemed to be a good thing for fungi — they don’t rely on sunlight for food and just need lots of dead stuff, and the fossil record shows an increase in fungal spores at this time. Since lichens contain a plant and a fungus, scientists wondered whether they were affected negatively like a plant or positively like a fungus.

“We originally expected lichens to be affected in a negative way, since they contain green things that need light,” says Huang.

To see how lichens were affected by the mass extinction, the scientists had to get creative — there aren’t many fossil lichens from that time frame. But while the researchers didn’t have lichen fossils, they did have lots of modern lichen DNA.

From observing fungi growing in lab settings, scientists know generally how often genetic mutations show up in fungal DNA — how frequently a letter in the DNA sequence accidentally gets switched during the DNA copying process. That’s called the mutation rate. And if you know the mutation rate, if you compare the DNA sequences of two different species, you can generally extrapolate how long ago they must have had a common ancestor with the same DNA.

The researchers fed DNA sequences of three families of lichens into a software program that compared their DNA and figured out what their family tree must look like, including estimates of how long ago it branched into the groups we see today. They bolstered this information with the few lichen fossils they did have, from 100 and 400 million years ago. And the results pointed to a lichen boom after 66 million years ago, at least for some of the leafier lichen families.

“Some groups don’t show a change, so they didn’t suffer or benefit from the changes to the environment,” says Lumbsch, who in addition to his work on lichens is the Vice President of Science and Education at the Field. “Some lichens went extinct, and the leafy macrolichens filled those niches. I was really happy when I saw that not all the lichens suffered.”

The results underline how profoundly the natural world we know today was shaped by this mass extinction. “If you could go back 40 million years, the most prominent groups in vegetation, birds, fungi — they’d be more similar to what you see now than what you’d see 70 million years ago,” says Lumbsch. “Most of what we see around us nowadays in nature originated after the dinosaurs.”

And since this study shows how lichens responded to mass extinction 66 million years ago, it could shed light on how species will respond to the mass extinction the planet is currently undergoing. “Before we lose the world’s biodiversity, we should document it, because we don’t know when we’ll need it,” says Huang. “Lichens are environmental indicators — by simply doing a biodiversity study, we can infer air quality and pollution levels.”

Beyond the potential implications in understanding environmental impacts and mass extinctions, the researchers point to the ways the study deepens our understanding of the world around us.

“For me, it’s fascinating because you would not be able to do this without large molecular datasets. This would have been impossible ten years ago,” says Lumbsch. “It’s another piece to the puzzle to understanding what’s around us in nature.”

“We expect a lot of patterns from studying other organisms, but fungi don’t follow the pattern. Fungi are weird,” says Huang. “They’re really unpredictable, really diverse, really fun.”

This study was contributed to by researchers from the Field Museum, Kasetsart University, Brigham Young University, and Academia Sinica.

Canadian carnivorous plants eat young salamanders


This 10 June 2019 video says about itself:

Botanical carnivory: Hungry plants and their salamander prey

Botanical carnivory: New research published by Algonquin Wildlife Research Station student Patrick Moldowan (University of Toronto, Canada), Alex Smith (University of Guelph, Canada), Njal Rollinson (University of Toronto), and colleagues (Teskey Baldwin, Tim Bartley, Hannah Wynen, University of Guelph) demonstrate a sinister side of the plant world. This video shows two young Spotted Salamanders (Ambystoma maculatum) trapped in the pitcher of a Northern Pitcher Plant (Sarracenia purpurea), a carnivorous plant that lives in nutrient-poor bogs. Salamanders for supper? Yes!

Video by: Patrick D. Moldowan.

From the University of Guelph in Canada:

Bug-eating pitcher plants found to consume young salamanders, too

June 7, 2019

Summary: Pitcher plants growing in wetlands across Canada have long been known to eat creatures — mostly insects and spiders — that fall into their bell-shaped leaves and decompose in rainwater collected there. But researchers have discovered that vertebrates — specifically, salamanders — are also part of their diet.

Call it the “Little Bog of Horrors.” In what is believed to be a first for North America, biologists at the University of Guelph have discovered that meat-eating pitcher plants in Ontario’s Algonquin Park wetlands consume not just bugs but also young salamanders.

In a paper published this week in the journal Ecology, the research team reports what integrative biologist Alex Smith calls the “unexpected and fascinating case of plants eating vertebrates in our backyard, in Algonquin Park.”

Pitcher plants growing in wetlands across Canada have long been known to eat creatures — mostly insects and spiders — that fall into their bell-shaped leaves and decompose in rainwater collected there.

But until now, no one had reported this salamander species caught by a pitcher plant in North America, including Canada’s oldest provincial park, a popular destination where the plants have been observed for hundreds of years.

Noting how long the park has held its secret — despite generations of visiting naturalists, its proximity to major cities and a highway running through its southern end — Smith said, “Algonquin Park is so important to so many people in Canada. Yet within the Highway 60 corridor, we’ve just had a first.”

In summer 2017, then undergraduate student Teskey Baldwin found a salamander trapped inside a pitcher plant during a U of G field ecology course in the provincial park.

He’s a co-author on the new paper along with other researchers at U of G and the University of Toronto.

Monitoring pitcher plants around a single pond in the park in fall 2018, the team found almost one in five contained the juvenile amphibians, each about as long as a human finger. Several plants contained more than one captured salamander.

Those observations coincided with “pulses” of young salamanders crawling onto land after changing from their larval state in the pond. Smith said these bog ponds lack fish, making salamanders a key predator and prey species in food webs.

He said some of the animals may have fallen into the plants, perhaps attracted by insect prey. Others may have entered the plants to escape predators.

Some trapped salamanders died within three days, while others lived for up to 19 days.

Prey caught inside the plant’s specialized leaves is broken down by plant digestive enzymes and other organisms in the water held inside the leaf. Smith said other factors may kill salamanders in pitcher plants, including heat, starvation or infection by pathogens.

He said pitcher plants may have become carnivorous to gain nutrients, especially nitrogen, that are lacking in nutrient-poor bog soil.

Other flesh-eating plants grow in nutrient-poor environments around the world. They include sundews, which use their sticky leaves to catch insects, and the Venus flytrap, whose carnivory partly inspired the Seymour plant in the sci-fi musical Little Shop of Horrors.

Meat-eating pitcher plants have been known since the eighteenth century. One species discovered a decade ago in Asia consumes mostly insects and spiders but also captures small birds and mice.

Smith said the Algonquin Park discovery opens new questions for biologists. Are salamanders an important prey source for pitcher plants? Are the plants important “predators” of the amphibians? Might the salamanders compete with plants for insect prey — and even “choke” the plant?

Tongue-in-cheek, he added that the find may also prompt park officials to rewrite interpretive materials. “I hope and imagine that one day the bog’s interpretive pamphlet for the general public will say, ‘Stay on the boardwalk and watch your children. Here be plants that eat vertebrates.'”

Birds, bees, flowers at botanical garden


Flowers, 2 June 2019

On 2 June 2019, we went to the Leiden botanical garden. Where we saw these flowers.

In the Clusius garden, the part closest to the entrance, a blackbird sang.

Iris germanica yellow flowers.

Cambridge milk parsley attracting honeybees.

A chiffchaff calls.

From the Clusius garden to another part.

A sign at a ‘messy’ area says this is a special area for hedgehogs. The botanical garden values them as they keep the numbers of plant eating snails down.

Flowers, on 2 June 2019

These flowers were present.

Tulip, 2 June 2019

So was this tulip, now past its prime.

Great spotted woodpecker sound.

Large earth bumblebee, 2 June 2019

Bumblebees on pineapple lily flowers, originally from South Africa. Like this large earth bumblebee.

Great yellow bumblebee, 2 June 2019

And this one; I think a great yellow bumblebee.

On the other side of the canal, an Egyptian goose couple in love. Also two jackdaws.

Yellow iris flowers on the bank, water lily flowers on the water.

A grey heron and a ring-necked parakeet flying overhead.

A lesser black-backed gull lands on the botanical garden side of the canal to pick up a piece of food.

Flowers, botanical garden, 2 June 2019

These flowers grow around a big London planetree.

Swifts flying overhead.

Bladder campion, 2 June 2019

Bladder campion.

Bladder campion, on 2 June 2019

Bladder campion, botanical garden, 2 June 2019

Another flower attracted this honeybee.

Honeybee, 2 June 2019

A great crested grebe swims in the canal.

In the botanical garden stream, pondskaters.

Fossil oak tree relatives discovery in Argentina


This 2017 video is about Castanopsis trees.

From Penn State university in the USA:

Argentine fossils take oak and beech family history far into Southern Hemisphere

June 7, 2019

One of the world’s most important plant families has a history extending much farther south than any live or fossil specimen previously recorded, as shown by chinquapin fruit and leaf fossils unearthed in Patagonia, Argentina, according to researchers.

“The oak and beech family is recognized everywhere as one of the most important plant groups and has always been considered northern,” said Peter Wilf, professor of geosciences and associate in the Earth and Environmental Systems Institute, Penn State. “We’re adding a huge spatial dimension to the history of the Fagaceae family, and that’s exciting.” The plant family also includes chestnuts and the closely related chinquapins.

Common in the Northern Hemisphere and Asian tropics, Fagaceae cross the equator only in Southeast Asia, and even there just barely. The latest study, published today (June 7) in Science, extends the family’s biogeographical history and suggests a Gondwanan supercontinent legacy in Asian rainforests larger than previously thought.

The researchers first found fossils resembling some oak leaves, with straight secondary veins and one tooth per secondary vein, at Laguna del Hunco, Chubut province. The leaves comprise about 10 percent of the thousands of 52-million-year-old leaf fossils, representing almost 200 species, found at the site over two decades in a long-term project between Penn State, Cornell University and Museo Paleontológico Egidio Feruglio (MEF), Trelew, Argentina.

For years the researchers hesitated to classify the leaves, because paleobotanist Edward Berry had assigned similar fossils to another family, and any claim of Fagaceae at so remote a location would require much more supporting evidence.

Later, the team unearthed rare fruit fossils — two fruit clusters, one with more than 110 immature fruits — at the site and compared them to living relatives. They found that these were fossils of ancient Castanopsis, an Asian chinquapin that today dominates the biodiverse, lower elevation mountain rainforests of Southeast Asia.

“One of the first clues was a little lip where the fruit is splitting open,” Wilf said. “I recognized this lip as being similar to the fruit of the Japanese chinquapin. Then I realized there’s a nut inside.”

The nuts are fully encased in a scaly outer covering, or cupule, that splits open when the fruits mature. The cupules are arranged on a spike-like fruiting axis, and the young nuts retain delicate parts from their flowering stage. Their features are just like the living Castanopsis, Wilf said, and the fruits confirm that the leaves are Fagaceae.

“This is the first confirmed evidence that Fagaceae, considered restricted to the Northern Hemisphere, was in the Southern Hemisphere,” said Maria Gandolfo, associate professor, Cornell University. “This is remarkable and allows us to rethink the origins of the fossil flora.”

The fossils date to the early Eocene 52.2 million years ago. They are the only fossilized or living Fagaceae ever found south of the Malay Archipelago, the island chain just north of Australia.

During the globally warm early Eocene there was no polar ice, and South America, Antarctica and Australia had not completely separated, comprising the final stage of the Gondwanan supercontinent. The researchers think animals had helped disperse the chinquapin’s ancestors from North to South America at an earlier time. The plants thrived in the wet Patagonian rainforest, whose closest modern analog is the mountain rainforests of New Guinea.

“Before the current semi-desert conditions, trees covered Patagonia,” said Rubén Cúneo, director of MEF. “Changes in climatic conditions turned it into a shrubland, and the trees were displaced.”

The chinquapins may have also ranged into then-adjacent Antarctica and on to Australia, said Wilf. Castanopsis may have survived in Australia until the continent collided with Southeast Asia, where today chinquapins are keystone species, providing forest structure and food and habitat for birds, insects and mammals.

“We’re finding, in the same rocks as Castanopsis, fossils of many other plants that live with it today in New Guinea and elsewhere, including ferns, conifers and flowering plants,” said Wilf. “You can trace some of the associations with Castanopsis seen in Eocene Argentina to southern China and beyond.”

Today, Castanopsis plays an important role in intercepting year-round mountain precipitation that delivers clean water for drinking, fishing and agriculture to more than half a billion people and sustains diverse freshwater and coastal ecosystems. However, humans are clearing these rainforests for timber, development and crop cultivation, and modern climate change is increasing droughts and fire frequency.

“These plants are adaptable if given time and space,” Wilf said, adding Castanopsis’ trek from Patagonia to Southeast Asia occurred over millions of years and thousands of miles. “But the pace of change today is hundreds of times faster than in geologic time. The animals that depend on these plants are adaptable only to the extent that the plants are, and we are one of the animals that depend on this system. If we lose mountain rainforests, really fast we lose reliable water flows for agriculture, clean coral reefs offshore, biodiversity and much more.”

This study has implications for extinction in the face of climate change, according to Kevin Nixon, professor and L.H. Bailey Hortorium curator, Cornell University. He said Castanopsis went extinct in Patagonia due to a major extinction caused by the slow cooling and drying of the climate that occurred with the glaciation of Antarctica and the rise of the Andes.

“Those kinds of climate changes can have massive effects on biodiversity,” Nixon said. “The relevance of understanding this is we can start to look at extinction processes. The better we can understand what causes extinction, the better we can deal with it.”

The National Science Foundation, National Geographic Society and David and Lucile Packard Foundation funded this research.