How mandarin fish feed, new research


This June 2019 video says about itself:

Quick facts about one of the most vibrantly colored tropical reef fish! The mandarinfish (mandarin dragonet, Synchiropus splendidus, blue (green) mandarinfish).

Synchiropus splendidus is a Pacific ocean species.

However, there are unrelated other fish, also called mandarinfish: Asian freshwater species.

This aquarium video shows feeding of Hydrolycus armatus, Chinese perch (Siniperca chuatsi), and Polypterus endlicheri.

Siniperca chuatsi is also called mandarinfish.

From the Forschungsverbund Berlin in Germany:

Born to be a cannibal: Genes for feeding behavior in mandarin fish identified

July 9, 2020

Some mandarin fish species (Sinipercidae) are pure fish-eaters, which feed exclusively on living juvenile fish — also of their own species. A research team led by the Chinese Huazhong Agricultural University (HZAU) and the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) has described the genome of four mandarin fish species and thus also identified genes for cannibalistic eating behaviour. Knowledge of the connections between the genome and feeding behaviour is of interest for sustainable aquaculture.

Most fish larvae feed on easily digestible, small zooplankton. Not so some species of mandarin fish. These are pure “fish-eaters” already after hatching and feed on young fish of other fish species and on conspecifics. This cannibalism leads to a high mortality rate of juvenile fish and to economic losses in aquaculture.

32 genes make the difference to cannibals

The researchers compared the genome sequences of different species of mandarin fish and were thus able to trace the evolution of 20,000 genes over a period of 65 million years. They were able to link many genes with species-specific characteristics. “For 32 of these evolving genes, we were able to experimentally demonstrate different gene expression in mandarin fish species that are common to other food and in pure fish-eating species,” explains Ling Li, one of the first authors of the study and guest scientist from HZAU at the IGB.

Rapid evolutionary adaptation in predatory behaviour

Mandarin fish are aggressive predators. During the complex genome analysis, the researchers identified so-called candidate genes that are associated with particularly high aggression and affect behaviour. “Our genome analyses show the evolutionary development of mandarin fish. They have adapted rapidly to changing environmental conditions, especially with regard to their feeding behaviour. Today, some mandarin fish species are more aggressive predators than others due to their genetic predisposition,” says Prof. Xu-Fang Liang from HZAU.

“Research on the relationship between the genetic code and feeding behaviour is an important basis for the sustainable aquaculture of these fish. In future, fish farmers will be able to use marker-based selection to choose fish for breeding where the genome indicates less predatory behavior — and thus reduce losses,” summarises Dr. Heiner Kuhl, leading bioinformatician of the project from the IGB.

High-throughput genome research at IGB

The reference genome for Siniperca chuatsi is one of the highest quality fish genomes to date. It was analysed using third-generation sequencing techniques and has very high sequence continuity and almost complete reconstruction of the 24 chromosomes. The high-quality reference genome enabled the cost-efficient sequencing of three other species from the Sinipercidae family by means of comparative genomics. This approach to create genome sequences for entire taxonomic families of organisms could serve as a blueprint for large-scale genomic projects.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.