Comb jellies, not sponges, most ancient animals?


This is a video about comb jellies from the Vancouver Aquarium in Canada.

From Nature journal:

Genome reveals comb jellies’ ancient origin

Sequencing data challenge sponges‘ claim to primacy in animal kingdom.

Amy Maxmen

08 January 2013

San Francisco

Animals evolved gradually, from the lowly sponge to the menagerie of tentacled, winged and brainy creatures that inhabit Earth today. This idea makes such intuitive sense that biologists are now stunned by genome-sequencing data suggesting that the sponges were preceded by complex marine predators called comb jellies.

Although they are gelatinous like jellyfish, comb jellies form their own phylum, known as ctenophores. Trees of life typically root the comb jellies’ lineage between the group containing jellyfish and sea anemones and the one containing animals with heads and rears — which include slugs, flies and humans. Comb jellies paddle through the sea with iridescent cilia and snare prey with sticky tentacles. They are much more complex than sponges — they have nerves, muscles, tissue layers and light sensors, all of which the sponges lack.

“It’s just wild to imagine” that comb jellies evolved before sponges, says Billie Swalla, a developmental biologist at the University of Washington in Seattle and a leading member of the team sequencing the genome of the comb jelly Pleurobrachia bachei. But the team is suggesting just that, in results they presented at the annual meeting of the Society for Integrative and Comparative Biology, held on 3–7 January in San Francisco, California.

Despite comb jellies’ complexity, DNA sequences in the Pleurobrachia genome place them at the base of the animal tree of life, announced Swalla’s colleague Leonid Moroz, a neurobiologist at the University of Florida in Gainesville. Another team presented results from genome sequencing for the comb jelly Mnemiopsis leidyi, and found that the phylum lands either below, or as close to the base as, sponges on the tree.

“We’ve always thought that predator–prey interactions and sensory adaptations evolved long after the origin of sponges,” Swalla says. “Now we need to imagine early life as a sponge, ctenophore and everything in between.” Because millions of species have gone extinct since animals appeared some 542 million years ago, Swalla says, the ancestor of all animals might look different from modern comb jellies and sponges.

Gene families, cell-signalling networks and patterns of gene expression in comb jellies support ancient origins as well. For example, Moroz and his team found that comb jellies grow their nerves with unique sets of genes. “These are aliens,” Moroz jokes. He suggests that comb jellies might be descendants of Ediacaran organisms, mysterious organisms that appear in the fossil record before animals. Indeed, in 2011, palaeontologists claimed that one of these 580-million-year-old fossils resembled comb jellies1.

Andy Baxevanis, a comparative biologist at the US National Human Genome Research Institute in Bethesda, Maryland, and a leader on the Mnemiopsis genome project, says that comb jellies are the only animals that lack certain genes crucial to producing microRNA — short RNA chains that help to regulate gene expression. Moreover, he points out, sponges and comb jellies lack other gene families that all other animals possess2, 3.

If comb jellies evolved before sponges, the sponges probably lost some of their ancestors’ complexity. Alternatively, says Sally Leys, a biologist at the University of Alberta in Edmonton, sponges may have complexity that scientists have yet to appreciate. “A lot of sponges are more exquisite than a lump on a rock,” she says.

Sceptics wonder whether a high rate of genetic mutation in comb jellies might be causing the lineage to seem closer to the bottom of the tree than it really is. “In the analyses I’ve done, ctenophores are the most problematic taxon. They jump around depending on which genes you use and which animals you include,” says Gert Wörheide, a molecular palaeobiologist at the Ludwig Maximilian University of Munich in Germany. At the meeting, Wörheide presented a tree of life created by comparing ribosomal protein sequences. In it, sponges remained rooted in their bottom-most spot.

Nature
doi:10.1038/nature.2013.12176

References

  1. Teng, F., Bengtson, S., Wang, Y., Wang, X.-L. & Yin, C.-Y. Evol. Dev. 13, 408–414 (2011).
  2. Maxwell, E. K., Ryan, J. F., Schnitzler, C. E., Browne, W. E. & Baxevanis, A. D. BMC Genom. 13, 714 (2012).
  3. Ryan, J. F. et al. EvoDevo 1, 9 (2010).

New research has resolved evolutionary biology’s most-heated debate, revealing it is the morphologically simple sponges, rather than the anatomically complex comb jellies, which represent the oldest lineage of living animals: here.

Some of the enigmatic Precambrian organisms in the Ediacaran Period grew large and stood tall above the seafloor. Canopy flow modeling suggests that their large size was optimized for access to flow in order to facilitate osmotrophic nutrient uptake in low-flow environments: here.

The dawn of the Animal Kingdom began with a collagen scaffold that enabled the organization of cells into tissues, scientists report in a new article: here.

Enhanced by Zemanta

21 thoughts on “Comb jellies, not sponges, most ancient animals?

  1. Why is it always assumed that there was only one basal metazoan? Sponges rather obviously are related to choanoflagellates, and it is more than reasonable to think that these were the source of the sponges. The fact that choanocytes appear in other metazoa (like ribbon worms) doesn’t necessarily imply a basal placement for the sponges (Porifera). If Ctenofores really are the sole basal phylum, how do you get sponges?

    Why do investigators get so hung up on relatively complex phyla as candidates for the basal metazoan? Why not start with the physiologically and genetically simplest animal that isn’t an obligate parasite? Try the Placozoa with its sole representative today, trichoplax. There are many reasons for starting there, and the reasons keep accumulating. This is something I suggested 20 years ago, and it keeps sounding better with time — even as a source for Porifera (by symbiosis with choanoflagellates), which I don’t see being explained by starting with Ctenophora as basal. (I’m not claiming a single basal animal, but at least Placozoa makes it seem a little more reasonable.) This is an extremely sketchy outline, but a good explanation would be fairly long.

    Is there anyone else out there with an opinion?

    Like

  2. Pingback: Ancient fossil named after Johnny Depp | Dear Kitty. Some blog

  3. Pingback: Hawskbill turtle research on Bonaire | Dear Kitty. Some blog

  4. Pingback: Seafish deaths in aquarium business | Dear Kitty. Some blog

  5. Pingback: Curaçao coral reefs and sponges | Dear Kitty. Some blog

  6. Pingback: Chinese Permian fossils discoveries | Dear Kitty. Some blog

  7. Pingback: Sponges made human evolution possible, new research | Dear Kitty. Some blog

  8. Pingback: American comb jellies on Dutch beach | Dear Kitty. Some blog

  9. Pingback: Top Ten wildlife species discoveries of 2015 | Dear Kitty. Some blog

  10. Pingback: Pre-Cambrian Fractofusus organism’s sex life, new research | Dear Kitty. Some blog

  11. Pingback: Pre-Cambrian marine animal Tribrachidium, new research | Dear Kitty. Some blog

  12. Pingback: ‘Jellyfish, not sponges, oldest animals’ | Dear Kitty. Some blog

  13. Pingback: Sponge-like Cambrian fossil discovery | Dear Kitty. Some blog

  14. Pingback: Pre-Cambrian sponges, world’s oldest animals discovered | Dear Kitty. Some blog

  15. Pingback: Lancelet DNA described | Dear Kitty. Some blog

  16. Pingback: Comb jellies, jellyfish relatives after all? | Dear Kitty. Some blog

  17. Pingback: ‘Sponges not ancestors of other animals’ | Dear Kitty. Some blog

Leave a reply to petrel41 Cancel reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.