Giant fossil penguin discovery in Antarctic


This video says about itself:

5 October 2010

Scientists have unearthed fossilized remains of a five-foot-tall (150-centimeter-tall) penguin in present-day Peru. The 36-million-year-old fossil sheds light on bird evolution, according to National Geographic grantee Julia Clarke. Video produced by the University of Texas at Austin.

From New Scientist:

Extinct mega penguin was tallest and heaviest ever

01 August 2014 by Jeff Hecht

Forget emperor penguins, say hello to the colossus penguin. Newly unearthed fossils have revealed that Antarctica was once home to the biggest species of penguin ever discovered. It was 2 metres long and weighed a hefty 115 kilograms.

Palaeeudyptes klekowskii lived 37 to 40 million years ago. This was “a wonderful time for penguins, when 10 to 14 species lived together along the Antarctic coast”, says Carolina Acosta Hospitaleche of the La Plata Museum in Argentina.

She has been excavating fossil deposits on Seymour Island, off the Antarctic peninsula. This was a warmer region 40 million years ago, with a climate like that of present-day Tierra del Fuego, the islands at the southern tip of South America.

The site has yielded thousands of penguin bones. Earlier this year, Acosta Hospitaleche reported the most complete P. klekowskii skeleton yet, although it contained only about a dozen bones, mostly from the wings and feet (Geobios, DOI: 10.1016/j.geobios.2014.03.003).

Now she has uncovered two bigger bones. One is part of a wing, and the other is a tarsometatarsus, formed by the fusion of ankle and foot bones. The tarsometatarsus measures a record 9.1 centimetres. Based on the relative sizes of bones in penguin skeletons, Acosta Hospitaleche estimates P. klekowskii was 2.01 meters long from beak tip to toes.

Its height will have been somewhat less than its length owing to the way penguins stand. But it was nevertheless larger than any known penguin.

Fossil and present penguins

Emperor penguins can weigh 46 kilograms and reach lengths of 1.36 metres, 0.2 metres above their standing height. Another extinct penguin used to hold the height record, at around 1.5 metres tall.

P. klekowskii‘s tarsometatarsus “is the longest foot bone I’ve ever seen. This is definitely a big penguin,” says Dan Ksepka at the Bruce Museum in Greenwich, Connecticut. However, he cautions that the estimate of its length is uncertain because giant penguins had skeletons “very differently proportioned than living penguins”.

Larger penguins can dive deeper and stay underwater longer than smaller ones. A giant like P. klekowski could have stayed down for 40 minutes, giving it more time to hunt fish, says Acosta Hospitaleche.

Journal reference: Comptes Rendus Palevol, DOI: 10.1016/j.crpv.2014.03.008

Pterosaur exhibition in the USA


This video from the American Museum of Natural History in New York City in the USA says about itself:

4 March 2014

They flew with their fingers. They walked on their wings. Some were gigantic, while others could fit in the palm of a hand. Millions of years ago, the skies were ruled by pterosaurs, the first animals with backbones to fly under their own power. In the new exhibition Pterosaurs: Flight in the Age of Dinosaurs, rare fossils, life-size models, and hands-on interactives bring these ancient animals to life.

Step back in time to see pterosaurs, including giants such as Tropeognathus mesembrinus, with a wingspan of more than 25 feet, and find out how they moved on land and in the air. Get a first-hand look at the rare pterosaur fossils that have helped paleontologists learn all that we know about these animals. In a virtual flight lab, use your body to pilot a pterosaur over a prehistoric landscape. Encounter the exceptional creatures that flew in the age of dinosaurs.

Pterosaurs: Flight in the Age of Dinosaurs is on view from April 5, 2014, through January 4, 2015. Learn more about the exhibition at http://www.amnh.org/pterosaurs.

This video, linked to the erxhibition, is called Pterosaur App and Card Game.

See also here.

North American mastodons and mammoths, new study


This video from the USA is about mastodons and mammoths.

From LiveScience:

Mammoths and Mastodons of the Ohio Valley Were Homebodies

By Laura Geggel, Staff Writer | July 28, 2014 01:55pm ET

People may imagine mammoths and mastodons as enormous beasts that roamed the vast North American continent more than 10,000 years ago. But the mammoths and mastodons of present-day southwestern Ohio and northwestern Kentucky were homebodies that tended to stay in one area, a new study finds.

The enamel on the animals’ molars gave researchers clues as to where the mammoths and mastodons lived throughout their lives and what they ate. They discovered that mammoths ate grasses and sedges, whereas mastodons preferred leaves from trees or shrubs. Mammoths favored areas near retreating ice sheets, where grasses were plentiful, and mastodons fed near forested spaces, the researchers said.

“I suspect that this was a pretty nice place to live, relatively speaking,” lead researcher Brooke Crowley, an assistant professor of geology and anthropology at the University of Cincinnati, said in a statement. “Our data suggest that animals probably had what they needed to survive here year-round.” [Image Gallery: Stunning Mammoth Unearthed]

Both animals, now extinct, likely came to North America across the Bering Strait land bridge that connected Alaska to Russia when sea levels were lower than they are today, Crowley told Live Science in an email.

Mammoths — which had teeth ideal for grinding grasses, as well as curved tusks and humped heads — are more closely related to elephants than mastodons are, Crowley said. Mammoths came to North America during the mid-Pleistocene Epoch, about 1 million years ago, she added.

Mastodons arrived much earlier. They had spread across America by the Pliocene Epoch, around 5 million years ago. Their molars were shaped to crush plants, such as leaves and woody stems, and they had long, straight tusks that could grow up to 16 feet (4.9 meters) long, Crowley said.

In the study, the researchers looked at the remnants of carbon, oxygen and strontium, a naturally occurring metal, in the enamel of molars from eight mammoths and four mastodons that lived in Ohio and Kentucky about 20,000 years ago.

The carbon analysis helped researchers learn about the animals’ diet, whereas the traces of oxygen told them about the general climate at the time. Strontium provides insights into how much the animal traveled as their molars developed. Researchers can look at the type of strontium within the enamel and determine where it came from by comparing it to local samples of strontium in the environment.

“Strontium reflects the bedrock geology of a location,” Crowley said. This means that if a local animal has traces of strontium in its tooth, researchers can deduce where that type of strontium came from in the area. “If an animal grows its tooth in one place and then moves elsewhere, the strontium in its tooth is going to reflect where it came from, not where it died,” she said.

Surprisingly, the researchers said, the strontium in the mammoth and mastodon teeth matched local water samples in 11 of the 12 mammals. Only one mastodon appeared to have traveled from another area before settling in the Ohio Valley.

The findings, however, only apply to the animals that lived in that region. “A mammoth in Florida did not behave the same as one in New York, Wyoming, California, Mexico or Ohio,” Crowley said.

The study was published July 16 in the journal Boreas.

Tyrannosaurs hunted in packs?


This video is called Tyrannosaur Rivalry – Planet Dinosaur – Episode 3 – BBC One.

From daily The Guardian in Britain:

Researchers find first sign that tyrannosaurs hunted in packs

Discovery of three sets of dinosaur trackways in Canada reveals that predators were running together

Ian Sample, science editor

Wednesday 23 July 2014 19.36 BST

The collective noun is a terror of tyrannosaurs: a pack of the prehistoric predators, moving and hunting in numbers, for prey that faced the fight of its life.

That tyrannosaurs might have hunted in groups has long been debated by dinosaur experts, but with so little to go on, the prospect has remained firmly in the realm of speculation.

But researchers in Canada now claim to have the strongest evidence yet that the ancient beasts did move around in packs.

At a remote site in the country’s northeast, they uncovered the first known tyrannosaur trackways, apparently left by three animals going the same way at the same time.

Unlike single footprints which have been found before, tyrannosaur trackways are made up of multiple steps, revealing the length of stride and other features of the animal’s movement. What surprised the Canadian researchers was the discovery of multiple tracks running next to each other – with each beast evidently keeping a respectable distance from its neighbour.

Richard McCrea at the Peace Region Palaeontology Research Centre in British Columbia was tipped off about one trackway in October 2011 when a hunting guide working in the area emailed him some pictures. The guide had found one footprint that was already exposed and later uncovered a second heading in the same direction. McCrea made immediate plans to investigate before the winter blanketed the site with snow.

He arrived later the same month and found a third footprint that belonged to the same trackway under volcanic ash. But the real discovery came a year later, when the team returned and uncovered two more sets of tyrannosaur tracks running in the same south-easterly direction.

“We hit the jackpot,” said McCrea. “A single footprint is interesting, but a trackway gives you way more. This is about the strongest evidence you can get that these were gregarious animals. The only stronger evidence I can think of is going back in a time machine to watch them.”

The footprints were so well-preserved that even the contours of the animals’ skin were visible. “You start wondering what it would have been like to have been there when the tracks were made. The word is terror. I wouldn’t want to meet them in a dark alley at night,” McCrea said.

From the size of the footprints, the researchers put the beasts in their late 20s or early 30s – a venerable age for tyrannosaurs. The depth of the prints and other measurements suggest the tracks were left at the same time. They date back to nearly 70m years ago.

Close inspection of the trackways found that the tyrannosaur that left the first set of prints had a missing claw from its left foot, perhaps a battle injury. Details of the study are published in the journal Plos One.

During the expedition, McCrea’s team unearthed more prehistoric footprints from other animals, notably hadrosaurs, or duck-billed dinosaurs. Crucially, these were heading in all sorts of directions, evidence, says McCrea, that the tyrannosaurs chose to move as a pack, and were not simply forced into a group by the terrain.

“When you find three trackways together, going in same direction, it’s not necessarily good evidence for gregarious behaviour. They could be walking along a shore. But if all the other animals are moving in different directions, it means there is no geographical constraint, and it strengthens the case,” said McCrea.

Biggest ever apatosaurus discovery in Colorado


This video is called Origami Dinosaur: APATOSAURUS.

From the Grand Junction Free Press in the USA:

Record dinosaur bone found in Colorado quarry

By Brittany Markert

07/21/2014 12:01:00 AM MDT

Rabbit Valley’s Mygatt-Moore quarry is home to hundreds of fossils left behind by dinosaurs and extinct sea creatures. Its most notable recent find was a 6-foot-7-inch-long, 2,800-pound apatosaurus femur.

That is the largest apatosaurus ever found anywhere, said Dinosaur Journey curator of paleontology Julia McHugh.

It is a groundbreaking discovery because it belonged to a beast likely 80 to 90 feet long, which is 15 to 25 feet longer than average, she said.

After five summers of work excavating the dinosaur leg bone, it was lifted Thursday morning from the quarry outside Grand Junction near the Utah border. A crew of experts led by the Museum of Western Colorado’s Dinosaur Journey Museum oversaw the excavation.

“It’s funny that it was discovered from a small piece exposed about the size of a pancake,” volunteer Dorthy Stewart said.

The creature ordinarily grew up to 69 feet long and ate plants.

According to the National Park Service, “You may have heard it referred to by its scientifically incorrect name, Brontosaurus. This sauropod (long-necked dinosaur) was discovered and named Apatosaurus, or ‘false lizard,’ because of its unbelievably large size. After Apatosaurus was named, other sauropod specimens were named Brontosaurus. It was later determined that both names actually referred to the same animal, Apatosaurus.”

Four-winged Chinese dinosaur discovery


This video says about itself:

Reptiles of the Skies – Walking with Dinosaurs in HQ – BBC

9 November 2012

The Cretaceous period saw the breaking up of the northern and southern landmasses. Flying dinosaurs like Tapejara would master the air and the new coast lines of prehistoric Earth. The largest flying dinosaur Ornithocheirus prepares for a long flight to breeding grounds.

However, this video is about pterosaurs: flying non-dinosaurs, living at the same time as dinosaurs.

From daily The Guardian in Britain:

Four-winged flying dinosaur unearthed in China

Newly discovered Changyuraptor yangi lived 125m years ago and was like ‘a big turkey with a really long tail’

Nishad Karim

Tuesday 15 July 2014 17.18 BST

A new species of prehistoric, four-winged dinosaur discovered in China may be the largest flying reptile of its kind.

The well-preserved, complete skeleton of the dinosaur Changyuraptor yangi features a long tail with feathers 30cm in length – the longest ever seen on a dinosaur fossil. The feathers may have played a major role in flight control, say scientists in the latest issue of Nature Communications, in particular allowing the animal to reduce its speed to land safely.

The 125m-year-old fossil, believed to be an adult, is completely covered in feathers, including long feathers attached to its legs that give the appearance of a second set of wings or “hind wings”. It is the largest four-winged dinosaur ever found, 60% larger than the previous record holder, Microraptor zhaoianus, in the family of dinosaurs known as microraptors.

These beasts were smaller versions of their closely related, larger cousins, the velociraptors made famous in the Jurassic Park movies. They belong to an even wider group including the king of all dinosaurs, Tyrannosaurus rex. At 1.3 metres long and weighing 4kg, the meat-eating C. yangi is one of the largest members of the microraptor family, which tended to weigh 1kg or less.

Microraptors, which are close relatives of modern birds, had many anatomical features that are now only seen in birds, such as hollow bones, nesting behavior, feathers and possibly flight. They were dinosaurs rather than pterosaurs, the more well known flying prehistoric reptiles.

C. yangi was [like] a big turkey with a really long tail,” said Dr Alan Turner from Stony Brook University, one of the authors of the paper. “We don’t know for sure if C. yangi was flying or gliding, but we can sort of piece together this bigger model by looking at what its tail could do. Whether or not this animal could fly is part of a bigger puzzle and we’re adding a piece to that puzzle.”

The fossil was discovered in Liaoning province, northeastern China, an area noted for the large number of feathered dinosaurs found over the past decade, including the first widely acknowledged feathered dinosaur, Sinosauropteryx prima, in 1996.

Before this study, it was thought that the small size of microraptors was a key adaptation needed for flight, but the discovery of C. yangi suggests that aerial ability was not restricted to smaller animals in this group.

See also here.

Hedgehog fossil discovery in Canada


This video is called Tiny Hedgehog Fossil Could Answer Climate-Change Questions.

From Wildlife Extra:

Fossils of tiny, unknown, hedgehog found in Canada

Fossil remains of a tiny hedgehog, about two inches long, that lived 52 million years ago have been discovered in British Columbia by scientists from University of Colorado Boulder.

Named Silvacola acares, which means tiny forest dweller, it is perhaps the smallest hedgehog ever to have lived and is both a genus and species new to science.

“It is quite tiny and comparable in size to some of today’s shrews,” said lead author Jaelyn Eberle.

“We can’t say for sure it had prickly quills, but there are ancestral hedgehogs living in Europe about the same time that had bristly hair covering them, so it is plausible Silvacola did, too.”

The fossils were found in north-central British Columbia at a site known as Driftwood Canyon Provincial Park that was likely to have been a rainforest environment during the Early Eocene Epoch.

See also here. And here.